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This note concerns the two simplest types of bounded operators with 
real spectrum on a Hilbert space H. The purpose of this note is to suggest 
an abstract algebraic characterization for these operators and to point out 
a rather unexpected connection between such algebraic considerations 
and the classical theory of ordinary differential equations. In particular, our 
Theorem II which gives an algebraic characterization of certain subjordan 
operators (defined below) seems very closely related to the classical theorem 
asserting that a Sturm Liouville operator defined on the interval [a, b] is 
positive definite if and only if there are no points conjugate to a in the 
interval. One appealing thing is that almost every idea presented here has 
a natural generalization worthy of investigation. 

The two types of operators considered here are : 
Jordan operators (order k)—operators of the form S + N where S is 

selfadjoint, S commutes with N, and Nk = 0. 
Subjordan operators (order k)—operators which are unitarily equivalent 

to the restriction of a Jordan operator C to an invariant subspace of C. 
A natural algebraic condition on a bounded operator T which generalizes 

the selfadjointness condition is 

POLn e~
isT*eisT = £ Aks

k. 
Jc = 0 

This is equivalent to 

dn+1 

- e~
isT*eisT = 0 

which is in turn equivalent to Cn
T

+1(I) = 0, where CT:&(H) -> <£(H) is 
defined by CT(A) = T*A — AT and C\ denotes the composition of the 
map CT with itself k times. An operator T which satisfies POL n will be 
called coadjoint (order n). Note that if T is coadjoint, then T* is not neces­
sarily coadjoint. The results announced here concern coadjoint operators 
of the second order only. Details of proofs will appear elsewhere. 

THEOREM I. An operator T is Jordan (order 2) if and only if both T and T* 
are coadjoint (order 2). 
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Next we turn to subjordan operators. It is obvious that any subjordan 
operator satisfies the POL condition of the appropriate order and it seems 
natural to ask 

Question. When is a coadjoint operator a subjordan operator! 
The purpose of this note is to give an idea of what this question involves 

by outlining the proof of the following statement. 

THEOREM II. If T is coadjoint (order 2), if T has a cyclic vector ij/0, if spec­
trum T = [a, b], and if T satisfies a strong additional technical assumption 
(to be described later), then T is a subjordan operator (order 2). 

Of interest in its own right is the generalization of the selfadjoint spectral 
theorem. 

THEOREM III. If T is a coadjoint operator, if T has a cyclic vector, and if 
spectrum T = [a, b], then T is unitarily equivalent to "multiplication by x" 
on a sort of generalized Sobolev space supported on [a, b]. 

For more on this last theorem see Part I in the outline for Theorem II. 
Now we introduce the notions needed to describe the technical assump­

tion in Theorem II. Henceforth assume that T satisfies POL 2. It is clear 
from POL 2 that 

e-isT*eisT 

This implies two things : first A2 is a nonnegative operator, and second 
elsT*A2e~isT = A2 for each s. If A2 has no null vectors, then [x,y]2 

= [A2x, y] is a positive definite bilinear form on H ([, ] denotes the inner 
product on H) and can be completed to a Hubert space H2 which contains 
H as a dense subspace. The relation eisT*A2e~isT = A2 is equivalent to the 
statement that eisT is a one parameter unitary group on H2. The infinitesi­
mal generator T of this group is selfadjoint and consequently can be 
thoroughly studied as an operator on H2 by using its spectral resolution 
which we write T = jhdEx. Let / stand for Lebesgue measure and take 
[a, b] = [0,1] henceforth. 

TECHNICAL ASSUMPTION (IN THEOREM II). There are positive numbers M 
and m so that, for any subset S of [0,1], ml(S) ^ [A2E(S)\j/0, ij/0] S Ml(S) 
where \\/0 is the cyclic vector for T mentioned in Theorem II. 

It turns out that this assumption is invariant under change of cyclic 
vector. Now we sketch the idea behind Theorems I and II. The proof of 
Theorem I is purely algebraic. One verifies 5 or 6 identities about T, CT(I) 
= - CT*(I), CT(I), and CT*(I) and uses them to show that the operator 
N = iA Ï lA2 is a legitimate bounded operator with square 0, and with the 
properties CN(I) = CT(I), C$(I) = C^(I), and C$*(I) = C^(7). With a good 



1972] JORDAN OPERATORS AND CONJUGATE POINT THEORY 59 

bit more manipulation it can be shown that T — N = S is selfadjoint and 
that S commutes with N. 

The proof of Theorem II relies on analysis and sits within the framework 
of the study of operators with a CM-functional calculus (cf. [C-F]). We 
break it into 4 parts. 

Part I. A representation for coadjoint operators. Let ^{Rn) denote the 
Schwartz space of C00 functions whose derivatives decrease faster than any 
polynomial at infinity. Define 

= -A==r f(s)e-
isTds for /e^jR 1 ) . 

J2n J _ „ 
9(f) 

The map cp is a continuous algebraic homomorphism of ^(R1) into L(H). 
By the Schwartz Nuclear Theorem, there is a distribution b on <9%R2), the 
Schwartz space on R2, such that b(f(x)g(y)) = [ç>(/)^0> ^(g^ol f° r e a c h 
ƒ, g e ^ . The POL n condition is equivalent to 

o = ^b(e^->>f{x)Afi) = fc([* - yT+1f(x)g(y)) 

which implies that the distribution b has support on the line {(x, x)}. From 
this, one can apply the Gelfand representation for the Banach algebra of 
operators of the form (p(f\ and get that A = {(x, x):xe a(T) = [0,1]} is 
the support of b. The usual representation for distributions (Schwartz 
Kernel Theorem) allows us to write b as 

M çl Qi + j 

(1) b(h(x9 y)) = £ Kij(x, x) -pj—-. h{x, x) dx 
i,;=o Jo ax ay 

for some Ktj. For the details of the preceding argument see [H]. After quite 
a lot of work the fact that [q>(f )^0 , <p(g)iAo] is a positive bilinear form gives 
us that M = 1 in (1) and consequently 

[<P( ƒ >Ao> <?(g)<Ao] 

REP = fgdfi00+ f'gdii10+ fgfdfi01 + f'g'diiu 
Jo Jo Jo Jo 

where the fitj are finite signed Borel measures, ju10 = fi0u Moo = Moo a n d 
/^ x is a positive measure. Let ft denote the matrix 

Moo Moi 
Mio Mn 

of measures and let H(pt) denote the closure of the C'[0,1] functions (once 
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differentiable) in (, )1. f/(/i) is a sort of generalized Sobolev space and T on 
H is unitarily equivalent to "multiplication by x" on H(n). 

Part II. The problem reduces to one of positive definiteness. Define a 
bilinear form { }fl on the 2-vector valued C'[0,1] functions (once dif­
ferentiable) by 

Suppose that { , }fl is a positive definite bilinear form and denote by Jf(n) 
the completion of the 2-vector valued C'[0,1] functions in { , }ll. Let M 
denote the functions in J^(fi) of the form (f

r). Clearly the map r:H(fi) -* 0t 
given by T(ƒ ) = (^) is an isometry of H(/i) onto ^2. Moreover, the map 
ƒ -• xf on H(/i) induces (under T) the map 

(M3W-* 
The operator J given by 

#K3fê)-*» 
is clearly Jordan and T is J restricted to ^2. Thus the original Hilbert space 
H is unitarily equivalent to 0t and the operator T on H under this unitary 
map becomes J restricted to ai. Thus Theorem II has been reduced to 
showing that { }fl is positive definite. 

Part III. A simplified representation. Now we invoke the Technical 
Assumption of Theorem II. It says precisely that d^n = P(k) dk where P 
is a function with the bounds m ^ P(k) £ M. This assumption along with 
the positivity of (, )1 forces dix10 to have the form djU10 = JR(2)<U where 
R is a Lebesgue L2 function. Now we change cyclic vector. The old cyclic 
vector \j/0 corresponds to the function 1 ; pick the new cyclic vector \\ic to 
correspond to the function c(x) = exp{ — ƒ£ R/P}. Then 

w/)^^(g)w= f fgdv00+ f rgpdk = {f,g)e 
Jo Jo 

where v00 is a finite signed Borel measure. The norm > / ( , )c is equivalent 
to the Sobolev space Hx norm, || ƒ H1 = JJ|/ ' |2 rfx + JJ| ƒ |2 dx. 

Part IV. 77ze Jacobi conjugate point theorem. If dv0o = Q(k) ^ a n d if P 
were differentiable (/,g)c could be written jh[Lf]gdk + P/'glJ where 
Lf = —(Pf)1 — Qf, and a considerable body of Sturm Liouville theory 
would apply. For the sake of exposition we shall assume that dv00 

= Q(k) dk, cite what is needed from Sturm Liouville theory, and assure the 
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reader that standard techniques can be modified to handle the case at hand. 
Using integration by parts one can write 

( ƒ, g\ = f fg[Q + B'] dx + f (fg)'B dx + f f'gP - fgB\o 
Jo Jo Jo 

where B is any real differentiate function. If we ignore boundary terms, 
the matrix of measures associated with this representation for (, )c is 
»B = (Q+

B
B'?)dx. 

Part II tells us that (modulo boundary terms) the proof is complete if we 
can find a function B for which det pB = (Q + B')P — B2 > 0 pointwise 
on [0,1]. Make the usual substitution B = —Pw'/w and observe that 

(2) (Ô + B')P = B2 

when w satisfies Lw = 0. Thus if a nonvanishing solution w to Lw = 0 
exists, a solution B to (2) exists. The preceding argument is tantamount to 
a proof of one side of the classical theorem (see [D-S],XIII. 7). 

THEOREM. The Sturm Liouville operator L on [0,1] with certain self adjoint 
boundary conditions is positive definite if and only if there is a solution w 
to Lw = 0 which is positive on [0,1]. 

Now we can use the reverse side of this theorem to conclude from the fact 
that (ƒ, g)c is positive definite that there is a solution w of Lw = 0 which is 
positive on [0,1]. Thus we are done except for the boundary terms which 
were ignored and the fact that what we wanted was not (Q + B')P = B2 

but strict inequality. One can use a continuous dependence argument to 
get strict inequality and the fact that ( ƒ, ƒ )c is positive for all ƒ in C'[0,1] is 
precisely what is needed to take care of the boundary conditions. 
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