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The main result is that every Hubert space admits continuously 
differentiable partitions of unity. We sketch a proof of the key propo­
sition. Details will appear in [4]. 

Much more is known for separable Banach spaces. R. Bonic and 
J. Frampton [l ] showed that if there are any nontrivial Ck (i.e., k con­
tinuous Fréchet derivatives) on E, a separable Banach space, then E 
admits C* partitions of unity. Thus separable Hilbert space, Zn, for 
n an even integer, and c0 admit C00 partitions of unity. C°° partitions 
of unity on separable Z2 were first constructed by James Eells; a 
proof appears in [2]. 

Let Rn be w-dimensional Euclidean space. Let 

CÎ.jr = {ƒ I ƒ G C\R", R), sup (\\D%) - Dkf(y)\\/\\x - y\\) £ M\ . 

If A is a closed subset of Rn, call ƒ a C\tM A -selecting function if 
ƒGCj> f 0£ƒ(*) g 1, Cj> (*) = liix€A and ƒ(*) = 0 if d(x, A) è 1. By 
smoothing out sup(0, 1— d(x, A)) we can always find a C\tM A-
selecting function provided M is large enough. For & = 0, f(x) 
= sup(0, 1— d(x, A)) has smallest M namely 1. For k = l and 2, we 
have the following: 

THEOREM 1. Let A = {x\xi^0} \\x\\ g l , i = l , • • • , n\. Theniffisa 
C\fM A-selecting function, n>M2+36MA. 

COROLLARY 1. The Whitney Extension Theorem fails f or separable 
Hilbert space. 

THEOREM 2. If A is a closed subset of H, any Hilbert space, then there 
exists a Cj,4 A-selecting function, j', and if gE.C{té(H, i?), g(x) = lforx 
in A and 0Sg(x) S1, then f (x) ^g(x). 

The key to the proof of Theorem 2 is 

PROPOSITION 1. Theorem 2 is true if H is finite dimensional and 
A = F a finite subset. 
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PROOF. If F={a}, a single point, then f(x) = n(\\x-~a\\) where 
n(t) = l-2t2,lor0^tS%,n(t)=2(l-t)\ior § ^ * g l , a n d » ( 0 = 0 , f o r 

In general if SQF let S*={y\ \\y~p\\ =\\y-i\\(U | | y -* | | ) for 
all p, qES and zEFy zQS}. Let K= {S\S*?*0}, and, for SG-K, 
let rs be the distance from the vertices of 5 to the point equidistant 
from the points of S in the plane determined by 5. Then 
5* is closed convex and, for SEK, the planes determined by 5 and £* 
are perpendicular. Let Ds(x) and Dsjix) be the distance from x to 
these planes. We obtain a C\A F-selecting function on a mixture of 
the complex K and USEKS*. Let G= {x\d(x, F)=l} and for SEK 
define: 

Ts= {x\ x=(y+z)/2 for some yES, z&S*}, 

Qs= {x\ x = ty+(l-t)z for some yES, zES*nG, 0 ^ / ^ f } . 

Then it can be shown that the TVs and Qss are closed, have interiors, 
have (n — 1)-dimensional intersections and that USEKQS \J TS 
= {x\d(x, F)^l}. 

We define 

frjix) = 1 - rl - 2DI(X) + 2D2s*(x), 

fQs(x) = 2DI(X) + 2(Ds(x) - ts)\ 

I t is easy to show tha t / r * and fQg are C2, that | |J?2/r sW|| = | | ^ 2 / ^ ( ^ ) | | 
= 4 and that frip) = 1 for pEF. I t is also possible to show that frSi fos 
and DfTSj Dfqs agree wherever their domains intersect and that 
IQS(X) ~DfQs(x) = 0 if xGG. Hence the function ƒ (x) = / r 5 (x) iîxE Ts, 
ƒ(*)=ƒ«*(*) if *GGs, for SEK, and ƒ 0 ) = 0 if d(x, F)^l is CÎ,4 Z

7-
selecting. The second part of the proposition can be established by 
first proving ƒ (x) ^ g (x), for xET{p}, pEF, and then showing that 
fSg on r # for dim S<k implies f<g on Ts for dim 5 = fe. fSg on 
jH^ follows from this. The figure illustrates the partitions when F is 
three points in R2, F*?*0 and F*ECohull(F). 

We now prove Theorem 2. We need the following lemma: 

LEMMA 1. If himPsDfP(x) =jf(x) for all x in some Banach space E 
wherefpECU(E, R)9 thenfECU(E, R). 

PROOF OF THEOREM 2. If A is a closed subset of Ü, direct pairs 
(F, M) where F is a finite subset of A and M is a finite-dimensional 
plane in i J containing F by (J? Af) g (/?', AT') if F C ^ ' and AT CAT'. 
Then find J/>,JW, C\^ F-selecting on M. By the second part of the 
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FIGURE 1 

proposition, (F, M)^(F', M') implies/F,MSfF>,M'\ M> Hence the net 
is monotone and the limit exists since / F . ^ ^ I . By the lemma, 
lAmptMfF,M\M' is C\A for all M', hence LimF,MfF,M=f(x) is 
Cî,4. Tha t ƒ is A -selecting and that the second part of the theorem 
holds is obvious. 

COROLLARY 2. If U is open in H a Hubert space, there exists a 
C\,. (H, R) function with 0Sf(x) and U= {x\f(x) > 0 } . 

PROOF. Apply Theorem 2 to the sets An = {x\d(x, complement of 
U)S2~n} etc. 
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COROLLARY 3. Any Hubert space admits C1 partitions of unity. 

COROLLARY 4. Cl(H, F) is dense in C°(H, F) for any Hubert space H 
and any Banach space F. 

REMARKS. If A is convex then n(d(xy A)) is the C}>4 -4-selecting 
function. If the Euclidean norm on Rn is replaced by the c0 norm, then 
given any M>0 there is no C{tM {0}-selecting function in w-dimen-
sional space for n>2M. This follows from a result of the author con­
tained in [3]. 
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