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1. Introduction. Current work on the extension of function theory
to infinite-dimensional domains has led to the consideration of classes
of analytic functions defined on Banach spaces, with Fréchet deriva-
tives of a given type, e.g., nuclear, compact or integral. The existence
theory of partial differential equations in this setting follows from
[G] for the nuclear bounded case, and is given in [D ] for formal power
series of a-B-y-type. In this note we describe the duality theory
(Theorem 1) and the existence theory (Theorem 2) of partial differ-
ential equations for a class of spaces of entire functions defined on a
Hilbert space, with Fréchet derivatives given by Hilbert-Schmidt
operators. When the underlying Hilbert space is finite-dimensional,
we recover results in [T, Chapter 9], in [B] and in [NS] (Fischer
space). When the underlying space is a Hilbert space of square-
integrable functions, we obtain the wave functionals in the Fock
representation of quantum field theory (cf. [NT]), subsuming some
of the results proved independently in [R].

2. Hilbert-Schmidt polynomials. Let E be a Hilbert space over the
complex field C, with inner product ( | ), and E’ the dual of E, with
the inner product (u’|v’)=(v|u) for u'=( |u), v'=( |v). Let E'V»
=E'\/ - - - VE' denote the n-fold symmetric product of E’ [Gr,
p. 191]. The Hilbert-Schmidt inner product on E’Vsis characterized
for decomposable elements by

! 1 ’ ! 1 ’ ’ 4
(CAVERRAVETAF/AVIRERVE'A =;z—‘2(uulv1) o+ (en | 8),

the summation extended over all permutations 7 of the indices. Ef'"

denotes the n-fold symmetric product equipped with the Hilbert-
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Schmidt inner product, and (ER'™” its completion.

Forn=1,2, . . -, let ®(*E) denote the Banach space of continuous
n-homogeneous polynomials P (obtained from continuous symmetric
n-linear forms A:EX - - - XE—C by Px)=A(, - - -, x)), with
the supremum norm on the unit ball of E, and let ®(°E) =C [N, p. 7].

PropPOSITION 1. The formula i(u{ \/ - + - NVuid )=ui - - - u,, where
ul -l (X)=u{ (x) - - - ud (x) for xEE (also u'"=u'---u’),
defines a linear injection from ER’" into ®("E). The continuous linear
extension T of i to (ER'™" is still injective. The image of 7, denoted by
®u(*E), is the Hilbert space of n-homogeneous Hilbert-Schmidt poly-
nomsials on E, with the inner product inherited from ER’™ denoted by
( [ ) and the associated norm by H || u. Let ®u("E)’ be equipped with
the dual inner product. Given P,E®x("E), the formula PL(x")
=(x'”[P,.)H, where xS E and x'"=( Ix)’, defines P,&®u(*E'), and
the map ( | P.)u—P) is a Hilbert space isomorphism.

3. Entire functions of Hilbert-Schmidt type.

PropPOSITION 2. Given p>0, if fo&E®u("E) for each n and

w0 p|fulll/nl< o then f=D mofa/n! is an entire function of
bounded type, i.e., [ takes bounded sets into bounded sets. If dnf(x)
denotes the nth derivative polynomial of f at x then d*f(0) =f,. The class
of such functions, denoted by F,(E), is o Hilbert space, with the inner
product ( I ), given by

2 1
Ul g = 2 0" — (@(0) | dg(O)x

and the associated norm denoted by || ||,. Clearly || ||, <|| |- when p <o.
Hence Foo(E) =Nocpcw F,(E) with the projective limit topology is a
countably Hilbert space, thus a reflexive Fréchet space, and Fo(E)
=Uocp< Fo(E) with the locally convex induciive limit topology is a
bornological (DF)-space.

THEOREM 1. Let 0=Zp=< o, with p~1=0 or « when p=ow or 0. If
f= o fa/nIESN(E) and g'=2 0o gh/n\EF(E), and if g,
E®u(*E’) corresponds to ( lgn)HE(PH("E)’ , then the series

© 1
<f7 g,> = Z'—l' (fnl gn)H
n=0 1 :
defines a bilinear form, placing F,(E) and F,~1(E') in separating
duality. The map g'—{ , g’) is a Hilbert space isomorphism (resp. a
topological vector space isomorphism) from F,(E)' onto F,~1(E') when
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0<p<w (resp. p=0 or ), and is the inverse of the Fourier-Borel
transformation [D].

SKETCH OF PROOF. Let T'EF,(E)’. Since ®x(*E) is continuously
imbedded in each &,(E), the restriction of 7" to ®g("E) belongs to
®u(*E)’, corresponding to T,E®u(E’) given by Ti(x')=T(x"").
The formula T'(x’) = T'(exp o #’) defines the Fourier-Borel transform
T:E'—C of T. We have in fact =Y o T\ /n!EF,~(E"). Con-
versely, given g’ EF,~1(E’) each d*g’(0) E®u(*E’') corresponds to a
unique ( ] 2)rEPx(*E)’. The formula

L

To(f) = 3= @) | gn
n=0 nl

for fEF,(E) defines T, EF,(E)’, and we get T,» =g’. This establishes
the isomorphism of vector spaces and the duality {f, g’)=T,(f).
Moreover, ||g/|l,-1=||Tw|| (dual norm in ,(E)’) when 0<p< .
The continuity of the mappings from F,(E)’ (resp. Fo(E)’) onto
Fo(E') (resp. Fo(E')) follows from the isometry from &,(E)’ onto
F,—1(E’) for 0<p< o by the properties of countably Hilbert spaces,
bornological (DF)-spaces and their duals.

COROLLARY 1. Fo(E) s reflexive and complete. F,(E) and Fo(E) are
Montel spaces, in fact nuclear, if and only if E is finite-dimensional.

SKETCH OF PROOF. The reflexivity, hence completeness, of the (DF)-
space Fo(E) follows from the duality. In the finite-dimensional case
the nuclearity of F,(E), hence of Fo(E), comes from the nuclearity of
the injections F,(E)—F,(E) for p <. E’ is a closed barrelled subspace
of F,,(E) and of Fo(E), so these spaces cannot be Montel or nuclear in
the infinite-dimensional case.

4. Partial differential operators of Hilbert-Schmidt type. To define
partial differential operators we need the following inequality.

PrOPOSITION 3. If 0=k <n and P,E®u("E) then d*P,(x) E®u(*E),
and for all x€E we have:

”% @+ Pn(2)

= () l2ulalsl

The proof, and others below, makes use of the following representa-
tion:

H

LeMMA 1. Given an orthonormal basis (e;): of E, each P,&E®u("E) is
uniquely expressed as a limit in || || a-norm by


file:////H-norm
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’ !
P”= E s‘l.."ne‘l...ein

1,00 iy

with symmeiric coefficients s, - - - i, C, and
2 2
[Palla = 22 [ al-
LT
We observe, however, that the ¢} - - - ¢, are not orthonormal.

By [N, §9, Lemma 1] we get d"f(x) E®x(*E) for all x€E when
d"f(0) E®x("E) and lim sup, “3"/’(0) /n!”}{"=0. We may then define:
given P= Y ™ . P, with P,&®x(*E), the partial differential operator
of Hilbert-Schmidt type P(d) is given by

m
P@)f(x) = 2 (&"f(x) | Pa)a.
n=0
If P=u{ - - - u, then P(d) is given by successive directional differ-
entiation along #y, + - -, #,. In particular, we are reduced to linear
partial differential operators with constant coefficients in the finite-
dimensional case. We also define the multiplication operator P+ by

P-f(x) = P(x)f(x).

ProprosITION 4. If f is in F,(E) then P(d)f and P-f are in F,(E) for
every 0<p<o< . Hence if f is in F,(E) (resp. Fo(E)) then so are
P(d)f and P-f.

Easy counterexamples show that not all f&EF,(E) are mapped into
F,(E) by P(d) or P- .

THEOREM 2. Let 0=Sp=<  and let P(d) be any partial differential
operator of Hilbert-Schmidt type: then for every fEF,(E) there is some
2E5,(E) such that P(d)g=f.

The proof uses the following lemmas:

LemMa 2. If P=)m o Pn and P'=) m, P, where ( |P.)r
E®u("E)’ corresponds to P, E®x("E’") by P, (x')=(x'”IP,,)H, then
(P@)f, g'y={f, P'-g') for f and g’ in the corresponding dual pairs
(Theorem 1), finiteness and equality holding when either side is finite.

The proof follows from a similar identity for the duality between
®r("E) and ®u("E’), established first for polynomials of finite type
(i.e., given by E'Y™), which are dense in ®x("E).

LEMMA 3. If 0<p< 0, fEF,(E) and P= ) .o P, with P,E®x("E)
then “Pf“ngllp'"“:’“f“t’
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The proof of the inequality uses a polynomial identity given in
[T, Lemma 2.2] applied first to P of finite type and fEU, ®x("E),
extended by density to any Hilbert-Schmidt polynomial P, and
finally to any f&%,(E), with the help of the following facts: the pairs
of operators ¢’(d) and e¢’- obtained from an orthonormal basis
(e!); of E’ satisfy the correct commutation relations required over the
polynomials; and Taylor series converge in || ||,-norm. The con-
tinuity of P-f—f follows from the inequality, and from the properties
of projective and inductive limits in the cases p= « and p=0.

Proor orF THEOREM 2. By Lemma 2 the transpose of P(d) by
( , )is P’- , which has a continuous left inverse by Lemma 3
applied to F-1(E’) (again p~1=0 when p= ). A standard Hahn-
Banach argument gives the result.

PROPOSITION 5. Let M be a measure space (e.g., locally compact),
and make E=L*(M): then P,E®u("E) if and only if there is some
B ELX(MX - - - XM), (n variables and product measure), such that

Pu(a) = fM- . th,.(tl,- o talt) - alt) b - - diy

for every a EL*(M). The funciion h, can be uniquely chosen to be
symmetric, and then || P.||x = “hn”m

It follows that the functions fEF,(E) are the Fock functionals of
[NT] and [R], and the partial differentials P,(d)f(a) are the func-
tional derivatives &.f™(a) of [R], where %, corresponds to P, by the
formula given above. The proof of Proposition 5 follows from the
Hilbert space isomorphism between (L2(M)g™” and symmetric
LY (MX - - - XM).
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