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1. Introduction. Current work on the extension of function theory 
to infinite-dimensional domains has led to the consideration of classes 
of analytic functions defined on Banach spaces, with Fréchet deriva­
tives of a given type, e.g., nuclear, compact or integral. The existence 
theory of partial differential equations in this setting follows from 
[G] for the nuclear bounded case, and is given in [D] for formal power 
series of ce-/3-7-type. In this note we describe the duality theory 
(Theorem 1) and the existence theory (Theorem 2) of partial differ­
ential equations for a class of spaces of entire functions defined on a 
Hubert space, with Fréchet derivatives given by Hilbert-Schmidt 
operators. When the underlying Hilbert space is finite-dimensional, 
we recover results in [T, Chapter 9], in [B] and in [NS] (Fischer 
space). When the underlying space is a Hilbert space of square-
integrable functions, we obtain the wave functionals in the Fock 
representation of quantum field theory (cf. [NT]), subsuming some 
of the results proved independently in [R]. 

2. Hilbert-Schmidt polynomials. Let E be a Hilbert space over the 
complex field C, with inner product ( | ), and E' the dual of E, with 
the inner product (u'\v') — (v|u) for u' = ( \u), v' = ( \v). Let £ / V n 

= E ' V * • * V-E' denote the w-fold symmetric product of E' [Gr, 
p. 191]. The Hilbert-Schmidt inner product on E'vn is characterized 
for decomposable elements by 

(u[ V * * • V Un I Vi V • • • V Vn) = — ] £ (uvl \ v[) • • • {llrn \ Vn), 
n\ , 

the summation extended over all permutations ir of the indices. E$n 

denotes the w-fold symmetric product equipped with the Hilbert-
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Schmidt inner product, and (EfHn)A its completion. 
For n = 1, 2, • • • , let (P(nE) denote the Banach space of continuous 

^-homogeneous polynomials P (obtained from continuous symmetric 
w-linear forms A:EX • • • XE—>C by P(x)=A(x, • • • , x)), with 
the supremum norm on the unit ball of E, and let (P(°E) ==C [N, p. 7]. 

PROPOSITION 1. The formula i{u[\J • • • \Jun)—u[ • • • un', where 
u{ • • • uu (x)~u[ (x) - • • Unix) f or xÇEE ialso u'n = u' • - - u'), 
defines a linear injection from Efsn into (?inE). The continuous linear 
extension ï of i to iE'n")A is still injective. The image of ï, denoted by 
(P#(nE), is the Hubert space of n-homogeneous Hubert-Schmidt poly­
nomials on E, with the inner product inherited from E#Vw denoted by 
( | )H and the associated norm by || ||jy. Let (PH(nE)' be equipped with 
the dual inner product. Given Pw G <?/ƒ("£), the formula Pn(x

f) 
= (x'n|Pw)7f, where xEiE and x'n=( \x)', defines Pn^<9H{nEf)^ and 
the map ( | P„ )H»->P£ is a Hilbert space isomorphism. 

3. Entire functions of Hilbert-Schmidt type. 

PROPOSITION 2. Given p > 0 , if /nG(P#(nP) for each n and 
]CîT=oPn||/n||jï/^!< °° then f=^n=ofn/n\ is an entire function of 
bounded type, i.e., ƒ takes bounded sets into bounded sets. If ânf(x) 
denotes the nth derivative polynomial of ƒ at x then ânf(0) =fn. The class 
of such functions, denoted by $P(E), is a Hilbert space, with the inner 
product ( | )P given by 

(f\g)P = ibpn-Afcf(o)\a"g(o))H 
and the associated norm denoted by || ||p. Clearly || ||p g || \\<rwhen p^cr. 
Hence $ao(E) = no<p<oo $P(E) with the projective limit topology is a 
countably Hilbert space, thus a reflexive Frêchet space, and $o(E) 
= Uo<p<oo $p(E) with the locally convex inductive limit topology is a 
bornological (DF)-space. 

THEOREM 1. Let Orgp^g <*>, with p~1 = 0 or oo when p = <*> or 0. If 
f=i::=ofn/n\e$P(E) and g'=TZ-*i!Jn^><&)> and if gn 

Çz(S>H(nE') corresponds to ( |g»)j3rGG>jsr(n-E)/, then the series 

<f,f) = È,-M»\gn)n 

defines a bilinear form, placing $PiE) and Sy-^JE') in separating 
duality. The map gfh~>( , g') is a Hilbert space isomorphism (resp. a 
topological vector space isomorphism) from $P(E)' onto 3>-i(E') when 
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0 < p < o o {resp. p = 0 or <*>), and is the inverse of the Fourier-Borel 
transformation [ D ]. 

SKETCH OF PROOF. Let TGÇP(E)'. Since (P#(nE) is continuously 
imbedded in each 5>(E), the restriction of T to (P#(nE) belongs to 
(PH(nE)\ corresponding to r i G ö ^ E ' ) given by T'Jx') = T(x'n). 
The formula t{x') — T(exp o x') defines the Fourier-Borel transform 
f:E'-+C of T. We have in fact f = ]£„% rn7w!G3y-i(E') . Con­
versely, given g'G^p-id*/) each ^ng/(0)G(PJff(

n£/) corresponds to a 
unique ( |gw)tfG(Ptf(nE)'. The formula 

^ ( / ) = E ^ ( ^ / ( 0 ) | g n ) H 
n-0 »1 

for fE:3P(E) defines Tg>E:<^p{Eyi and we get fo'^g'. This establishes 
the isomorphism of vector spaces and the duality (ƒ, g')=T0>(f). 
Moreover, ||g1|p-i = ||7V|| (dual norm in $P(E)') when 0 < p < o o . 
The continuity of the mappings from ^ ( E ) ' (resp. ^ ( E ) ' ) onto 
ÊFoCE') (resp. ^ ( E ' ) ) follows from the isometry from ^ ( E ) ' onto 
5>-i(E') for 0 < p < oo by the properties of countably Hubert spaces, 
bornological (DF)-spaces and their duals. 

COROLLARY 1. 9:o(E) is reflexive and complete. ^ ( E ) and $o(E) are 
Montel spaces, in fact nuclear, if and only if E is finite-dimensional. 

SKETCH OF PROOF. The reflexivity, hence completeness, of the (DF)-
space 9:o(E) follows from the duality. In the finite-dimensional case 
the nuclearity of ^ ( E ) , hence of 3:o(E), comes from the nuclearity of 
the injections 5v(E)—>3r

p(E) for p <cr. E' is a closed barrelled subspace 
of SF*,(E) and of 3:o(E), so these spaces cannot be Montel or nuclear in 
the infinite-dimensional case. 

4. Partial differential operators of Hilbert-Schmidt type. To define 
partial differential operators we need the following inequality. 

PROPOSITION 3.1f0^k^n and P«G(Ptf(nE) then âkPn(x)E(?H(kE), 
and for all x&E we have: 

11*1 llff \k/ 

The proof, and others below, makes use of the following representa­
tion: 

LEMMA 1. Given an orthonormal basis (£»)» of E, each PnÇz®H{nE) is 
uniquely expressed as a limit in || \\H-norm by 

file:////H-norm
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•* n — s J S{x * ' * in &%i * ' ' &in 

* 1 . " 'fin 

with symmetric coefficients s^ • • • t„GC, and 

1 4 = £ i**---d'. 
We observe, however, that the er

h • • • e{ft are not orthonormal. 
By [N, §9, Lemma l ] we get ânf(x)E<?H(nE) for all x&E when 

ânf(0)E(?H(nE) and lim sup„ \\ânf(0)/nl\\){n = 0. We may then define: 
given P — ^LX=O ^n wi1^ PnG:(Ptf(nE), the partial differential operator 
of Hilbert-Schmidt type P(d) is given by 

m 

P(d)f(x) = £ («*ƒ(*) | P„)H. 

If P — u{ • • • wtt' then P(d) is given by successive directional differ­
entiation along «i, • • • , wn. In particular, we are reduced to linear 
partial differential operators with constant coefficients in the finite-
dimensional case. We also define the multiplication operator P • by 
P . / ( * ) = P ( * ) / ( * ) . 

PROPOSITION 4. Iff is in 5>(E) then P(d)f and P-f are in 5>(E) for 
every 0 < p < c r < o o . Hence if f is in ^ ( E ) (resp. $o(E)) then so are 
P(d)fandP-f. 

Easy counterexamples show that not all ƒ£$>(£) are mapped into 
3>(E) by Pid) or P . . 

THEOREM 2. Let O^jp^g <*> awd tó P(d) &£ a«:y partial differential 
operator of Hilbert-Schmidt type: then f or every fÇz$P(E) there is some 
g&P(E) such that P(d)g=f. 

The proof uses the following lemmas : 

LEMMA 2. If P^J^^Pn and P ' = Z ? M ) ^ where ( \Pn)H 

&®H(nEy corresponds to PI E(PH(nEf) by PJ (x') = (x'n\Pn)H, then 
(P(d)fy g') = (f, P'-gr) for ƒ and g' in the corresponding dual pairs 
(Theorem 1), finiteness and equality holding when either side is finite. 

The proof follows from a similar identity for the duality between 
(?H(nE) and (Pi*(nE'), established first for polynomials of finite type 
(i.e., given by E'V n) , which are dense in (P#(nE). 

LEMMA 3. If 0 < p < oo, ƒG$FP(E) and P = ]£?-o ^n w#A PwG(Ptf(nE) 
/^||p./||pè||Pw.i|p | |/| |p. 
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The proof of the inequality uses a polynomial identity given in 
[T, Lemma 2.2] applied first to P of finite type and / G U n (P#(n£), 
extended by density to any Hilbert-Schmidt polynomial P, and 
finally to any ƒ £ $P(E>), with the help of the following facts: the pairs 
of operators e'(d) and e'• obtained from an orthonormal basis 
(e{)i of E' satisfy the correct commutation relations required over the 
polynomials; and Taylor series converge in || ||p-norm. The con­
tinuity of P -f^f follows from the inequality, and from the properties 
of projective and inductive limits in the cases p = <*> and p = 0. 

PROOF OF THEOREM 2. By Lemma 2 the transpose of P(d) by 
( , ) is P'• , which has a continuous left inverse by Lemma 3 
applied to 5y-i(.E') (again p~1:=0 when p=oo) . A standard Hahn-
Banach argument gives the result. 

PROPOSITION 5. Let M be a measure space {e.g., locally compact), 
and make E = L2(M): then Pn&(PH(nE) if and only if there is some 
hnÇzL2(MX • • • XM), (n variables and product measure), such that 

Pn(a) = f f hn(th • • , tn)a(h) • • • a(tn) dh • • • dtn 

J M J M 

for every aÇzL2(M). The function hn can be uniquely chosen to be 
symmetric, and then ||Pn||fi==|WU2-

I t follows that the functions ƒ G $P(E) are the Fock functionals of 
[NT] and [R], and the partial differentials Pn(d)f(a) are the func­
tional derivatives hnf

(n)(a) of [R], where hn corresponds to Pn by the 
formula given above. The proof of Proposition 5 follows from the 
Hubert space isomorphism between (L2(ikf)#w)A and symmetric 
L*(MX • • • XM). 
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