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1. Introduction. In [1], S. P. Wang uses the techniques of [2] to
prove a converse to a Selberg lemma for solvable groups. In [3], the
author gave an elementary proof of the main result of [2] using the
semisimple splitting. It is quite natural to expect that the results of
[1] should also have an elementary proof in terms of the semisimple
splitting. We do so in this paper.

2. Preliminaries. Let .S be a simply connected solvable analytic
group with nil-radical H. Suppose we imbed S as a subgroup of
GL(%, R), the group of all z by # nonsingular real matrices. Let @(S)
denote the algebraic hull of S. Then we can write @(S)=N-T, where
N is the group of all unipotent matrices in @(S) and T is a maximal
abelian subgroup of semisimple matrices in @(S). The relevant facts
about algebraic groups can be found in [6]. In [3] we stated the
following result primarily due to L. Auslander [4].

There exists an imbedding of S as a subgroup of GL(#, R) satisfy-
ing the following properties.

1. HCN.

2. The projection mapping P:@(S)—N restricted to S defines a
diffeomorphism of .S onto V. We denoted the restriction of P to S by
n:S—N.

Denote the projection mapping of @(S) into T by ¢. Let C be a
closed subgroup of .S. As we have seen in [3] we can choose T so that
1(C)Ca(C). Let C"=@(CNH)C. Then C’'/C is compact and C’ is
closed in S. From our choice of T and since [@(C), @(C)|C @(CNH)
it follows that #(C’) is a closed subgroup of N. It is easy to see that
the following statements are equivalent.

1. S/C is compact.

2. §/C’ is compact.

3. N/n(C’) is compact.

4, N=qa=(C")).
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3. Wang’s Theorem A. We shall assume the following two simple
lemmas from [1].

LeEmwMA 3.1. Let V be a finite-dimensional vector space over the reals,
W a proper subspace of V and G a connected solvable subgroup of GL(V).
Then there is a neighborhood Q of the identity in G such that U,eq g(W)
#V.

LeMMA 3.2. Let X be a nonempty conic open subset of V and Q a
compact neighborhood of 0 in V. Then for every x in X, there is a positive
number r such that sx+QCX for all s=v.

Let C be a closed subgroup of the simply connected solvable
analytic group S. We shall assume the notation and conventions of
§2.

We say that C has the Selberg property in S if and only if for any
sin S and for any neighborhood Q of 1 in S there exists # and v in @ and
an integer />0 such that us% is in C.

THEOREM A. Suppose that C has the Selberg property in S. Then
S/C is compact.

ProOF. By 1.2 of [5], C’ has the Selberg property. Since S/C is
compact if and only if S/C’ is compact we can replace C by C’ in our
discussion. Thus without loss of generality we will assume throughout
that the subgroup C under consideration has the addition property
that @(CNH)CC. It follows that #(C) is a subgroup of N. We must
prove that N=a(n(C)).

Assume that NV is abelian. Suppose that N#@(n(C)). Let @ be
the set of all x in NV such the euclidean absolute value of x is less than
one. Let Q, be the set of all x in V whose euclidean absolute value is
less than one half. Since S normalizes N, by Lemma 1 it is easy to see
that there is a compact symmetric neighborhood © of 1 in .S such that

(a) Uuca u@n(C))u1=~N.

It follows from elementary topological group theory techniques
(see p. 95 of [7]) that @ can be chosen with the addition properties
that

(b) For all » in @, uQsu=1C Q.

(c) Q2Cn () where n is the homeomorphism of S onto NV intro-
duced in §2.

By [5], HC/H has the Selberg property in the vector group S/H.
Thus by [5] again we have that S/HC- is compact. It follows from
our previous discussion that N=H4 G(r(C)).
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Let X =N-—Uyco #@(#(C))u". Then X is a nonempty open conic.
It follows that there is an % in H such that A*+Q,CX, for all positive
integers J. Since C has the Selberg property in S there are elements %
and v in € and a positive integer / such that uh's is in C. Thus
uhlu—'n(uv) is in n(C). Note that by #(uv) we mean the application
of the projection map # to the product #v. From this equation we get
that klu='n(uv)u is in «'n(C)uX. Our choice of Q gives u~'n(uv)u
€. Thus B4+ X, a contradiction.

Suppose N is not abelian. Let [x, y] denote the commutator
xyx~y~! of x and y. Denote the last nontrivial term in the lower cen-
tral series of V by M. Using induction on the number of terms of the
lower central series of N we can assume that the theorem holds in
the group S/M. By [5], MC/M has the Selberg property in S/M.
Thus N=M+a(r(C)).

Let z and 2’ be in N. We can write z=xy and 2’ =x"y’ where x and
%’ are in M and y and y’ are in @(#(C)). Since M is central in N, [z, 2’|
=[y, '] is in @(#(C)). Thus MC [N, N]Ca#(C)).

4. Wang’s Theorem B. We shall be satisfied with proving Wang's
Theorem B for the special case of S simply connected.

THEOREM B. Let S be a simply connected solvable analytic group, C a
discrete subgroup of S such that S/C is compact, and Z the centralizer
of Cin S. Then Z is abelian.

Proor. Since Z commutes with C it commutes with @(C). Thus
Z acts by the identity map on N. This easily implies that Z must be
contained in N. Thus Z is abelian.

REFERENCES

1. S. P. Wang, On S-subgroups of solvable Lie groups, Amer. J. Math. 92 (1970),
389-397.

2. G. D. Mostow, Factor spaces of solvable groups, Ann. of Math (2) 60 (1954), 1-
27. MR 15, 853.

3. R. Tolimieri, Applications of the semisimple splitting, Bull. Amer. Math. Soc.
77 (1971), 275-280.

4. L. Auslander and J. Brezin, Almost algebraic Lie algebras, J. Algebra 8 (1968),
295-313. MR 37 #334.

5. A. Borel, Density properties for certain subgroups of semi-simple groups without
compact components, Ann. of Math. (2) 72 (1960), 179-188. MR 23 #A964.

6. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78
(1956), 200-221. MR 19, 1181.

7. L. S. Pontrjagin, Topological groups, GITTL, Moscow, 1954; English transl.,
Gordon and Breach, New York, 1966. MR 17, 171; MR 34 #1439.

YaLE UNiveErsitY, NEw HaveN, CoNNECTICUT 06520



