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A REMARK ON CLASSIFICATION OF RIEMANN 
SURFACES WITH RESPECT TO Au = Pu 

BY MITSURU N A K A I 1 

Communicated by W. H. Fuchs, October 30, 1970 

1. Consider a Cl differential P(z)dxdy (z=x+iy; P ^ O , P ^ O ) 
on an open Riemann surface R. We denote by 0px the set of pairs 
(R, P) such that the subspace PX(JR) of the space P(i?) of C2 solu
tions u of Au = Pu on R determined by a property X reduces to {0}. 
Here the possibilities for X that we consider are B (boundedness), 
D (Dirichlet-finite: DR(U) =fR |grad u(z)\ 2dxdy), E (energy-finite: 
ER(u)=Dit(u)+fRP(z)(u(z))2dxdy), and their combinations BD, 
BE. The purpose of this note is to announce that the following very 
simple pair ( U, Q) given by 

(1) U= {z; \z\ < 1 } , Q{z) = ( 1 - | s i ) " 1 

is an example of the strict inclusion relation 

(2) 0PD < 0PE. 

Here and hereafter 2I<33 means that 21 is a proper subset of S3. This 
type of classification problem for Riemann surfaces proposed by 
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Ozawa [5] and Royden [6] thus comes to the following complete 
conclusion : 

(3) 6Q < 0PB < OPD = 0PBD < 0PE = 0PBE 

for pairs (R, P) of Riemann surfaces R and C1 differentials P on R 
( P ^ O , P ^ O ) . Here 0G is the set of pairs (R, P) such that R does not 
carry a harmonic Green's function. For the latest information on this 
subject, refer to [ l ] . 

2. Since the harmonic Green's function G{z1 f) on U is 
log(| 1 - ? J S | / | s - f | ), we have 

G(reid, f) dB = - 2w max(log r, log | f | ). 
o 

By virtue of this relation it is easy to evaluate 

(D) f G(z, JOÖOÖGG") dx dy dZ dv < oc (f = £ + it,). 
J uxu 

By the integral comparison theorem ([3], [4], [2]), (D) impl ies the 
existence of an order-preserving isometric vector space isomorphism 
U-^TU of QBD(U) onto HBD(C7) (H stands for harmonic) deter
mined by 

(4) U = T U - — f G( •, r)Q(r)«(r) « <**. 

In particular we obtain (U, Q)(£ÖPBD. Since ÖPBD = OPD ([2], [3]), 
we conclude that 

(5) (17, Ö) e OPD. 

Observe that every u<EQBE(U) (CQBD(£/)) is a difference of 
two nonnegative #»-£QBE(C/)> i-e- u = Ui~u2 (Royden [ó]). Let 
uEQBE(U) and u^O. Since 

/ 
(1 - I z I ) JA*(S) < oo (dM(z) = Q(z)u(z) dx dy è 0), 

by Littlewood's theorem we have 

f) rfM(f) = 0 Hm f G(fé^,, 
r-»l •/ V 

for almost every 0 E [0, 2w] (cf. e.g. Tsuji [7, p. 170]). As the bounded 
harmonic function TU has the radial limit limr_*i Tu(rei6) for almost 
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every 0G[O, 27T], we see by (4) that the same is true for u and a 
fortiori 

(6) Y\m.u{rêB) = limru(reid) = u*(0) è 0 
r—>1 r—>1 

almost everywhere on [0, 27r]. If u*(0)>0, then u(reie)>u*(d)/2 for 
0 < € < r < l and therefore 

1(B) = f Q(reid)(u(reid))2r dr 
J o 

(7) 

r1 i 
^ é -^»*^)) 1 f dr = o,. 

J e 1 — r 
By Fubini's theorem, 

Q(z)(u(z))*dxdy = I /(0) d9. 

In view of (7), the quantity (8) is finite only if u*(6)=0 almost 
everywhere on [0, 27r]. Then by Poisson's representation, we deduce 
™ = 0 and consequently b y O ^ w ^ r w w e conclude that w = 0. There
fore uGQBE(U) (ttèO) implies that « s O , i.e. (£7, <2)G0PBE. Since 
0PBE = 0PE (Royden [ó]), we obtain 

(9) (17, Ö) G OPE. 

The relations (5) and (9) imply (2). 

3. In our recent paper [4] (see also [l]) we determined the de
generacy character of (Em, Pa) (Em: ra-dimensional Euclidean space 
( m ^ 3 ) ; Pa(x)~\x\~a (\x\ —»<»)) as follows: 

(10) 

(£•», Pa) e e P B - 0 G (a S 2); 

(E™, Pa) G OPD ~ 0PB (2 < a ^ (m + 2)/2) ; 

(£*, P«) G OPE - 0PD {{m + 2)/2 < a g m) ; 

( E - , P«) £ 0PE (m < a) . 

The 2-dimensional analogue is (Z7, P«) (P«(s)~( l - 1 s| )— (| z| ->1)) : 
The pair (U, P«) will be an example for each strict inclusion in (3) 
if a is properly chosen, which will be discussed in detail elsewhere. 

ADDED IN PROOF. The 2-dimensional analogue of (10) for (Î7, P«) is: 
2^a; 3 / 2 ^ a < 2 ; l ^ a < 3 / 2 ; a < l (M. Nakai, The equation Au = Pu 
on the unit disk with almost rotation free P ^ 0 (to appear)). 



530 MITSURU NAKAI 

REFERENCES 

1. M. Glasner, R. Katz and M. Nakai, A remark on classification of Riemannian 
manifolds with respect to Au=Pu, Bull. Amer. Math. Soc. 77 (1971), 425-428. 

2. M. Nakai, Dirichlet finite solutions of Au=Pu, and classification of Riemann 
surfaces, Bull. Amer. Math. Soc. 77 (1971), 381-385. 

3. , Dirichlet finite solutions of Au~Pu on open Riemann surfaces, Ködai 
Math. Sem. Rep. (to appear). 

4. , The equation Au—Pu on Em with almost rotation free P^O, Tôhoku 
Math. J. (to appear). 

5. M. Ozawa, Classification of Riemann surfaces, Ködai Math. Sem. Rep., 1952, 
63-76. MR 14, 462. 

6. H. Roy den, The equation Au=Pu and classification of open Riemann surfaces, 
Ann. Acad. Sci. Fenn. Ser. A I No. 271 (1959). MR 22 #12215. 

7. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. 
MR 22 #5712. 

521 GEORGINA AVENUE, SANTA MONICA, CALIFORNIA 90402 


