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There is a proliferation of proposed algebraic i£-theories [5], [ó], 
[s], [ i l ] , [ l2] , [ l3] , [IS] and one of the present authors can share 
the blame for three of them. However some rather striking relation­
ships have been found which indicate that the various i£-theories, 
while not the same, are at any rate comparable. This note describes 
a relation between the X-theory proposed by Quillen [13], which 
has the advantage of computability using powerful techniques of 
the homology of groups, and that i£-theory defined axiomatically in 
[8] and constructed semisimplicially in [5], which possesses extremely 
pleasant functorial properties. I t is our hope that this connection 
will be useful in computing the i£-theory of [8], and thus eventually 
the stable i£-theory [7] which is analogous, in this rarefied setting of 
rings, with stable homotopy theory. 

We begin by recalling (in slightly different form from [13 ]) Quillen's 
construction. For any ring R, one forms Z^WiGlÇR)). Here Gl(R) is 
regarded as a (constant) simplicial group, W is the simplicial classify­
ing space, [lO, p. 87], and Z*, is the integral completion functor of 
Bousfield and Kan [2]. Then Kf(R) =iri(ZJVGl(R)),i^l, where the 
superscript refers to the author. 

In order to give the simplicial definition of [5] of the i£-theory of 
[8], we recall some terminology. One works in the category ring of 
rings (without unit) and one lets E be the endomorphism of ring, 
ER = tR[t], the path ring. The morphisms e:E—>ƒ, /x—>E2 given by 

eR:ER = tR[t] ->R, H -* 1," and 

VRlER = tR[t] -> tuR[t, u] = E2R, t -> tu, 

give rise to the cotriple (E, e, ju) in ring. Let ER be the augmented 
semisimplicial complex, (ER)n

z=zEn+2R, w â — 1 , constructed from 
this cotriple, and set 

K-*(R) - #M(Gl( l jR)) , i è l . 

The upper indexing is motivated by topological considerations, and 
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ir refers to the "augmented" homotopy groups [5] (fi = 7rt* for i ^ l , 
the augmentation entering for i< 1 because of the extra face operator 
e:(ER)o-+(ER)-i). 

Consider now the cotriple (P, 6, p) in ring where PR~R[t]f eR:PR 
-*R is given by "t-*l" and HR:PR = R[t]->P2R = R[t, u] is given by 
t—Hu. Let PR be the associated augmented semisimplicial complex. 
Then there is a canonical map 

I : G 1 ( E J R ) - - > G 1 ( ? 1 Î ) . 

Also, the complex Gl(PR) is acyclic, so if H is the homogeneous space 
of the inclusion 6, then H^LWGI(ER). We can however identify H 
explicitly. 

Note that (PR)n^Pn+lR = R[t0, • • • , tn] and (ER)n = (t0 • • •*„) 
•-R[/o, • • • , * » ] . Thus we have a short exact sequence of rings 

(ER)n~->(PR)n->Q(R)ny 

where <2(jR)w = i?Do, • • • , tn]/(t0 • • • /„), n^Q. Q(R) is a simplicial 
ring, and since Gl is left exact, we have an exact sequence of simplicial 
groups 

1 - • G1(£JR) -^ Gl(PjR) 1+Q(R). 

THEOREM 1. The canonical map H-+QR is an isomorphism of 
simplicial groups. In particular\ the map j above is surjective. 

Note that Q(R)Q = Gl(R[t0]/(t0))=Gl(R). Thus we have an im­
bedding of the constant complex Gl(R)^>Q(R) and hence a map 

Zjr(a):Zj?G\(R)^ZjFQ(R). 

Note that by Theorem 1, Gl(ER) is the "second loop group" of 
WQ(R), so we can identify TiWQ(R)=K-i(R)t i^l. In order to 
proceed further we need 

THEOREM 2. The action of WiWQ(R) on 7rnWQ(R) is trivial In par­
ticular, WQ(R) is "nilpotent" in the terminology of Bousfield and Kan. 

This is proved by translating the problem to showing that the 
action of Gl(-R) on the augmented homotopy groups of Gl(ER) is 
trivial. This in turn is a generalization of the classical Whitehead 
lemma, which implies the statement of Theorem 2 for x_i. 

COROLLARY. [2]. For all i we have 

K-'iR) S TTiiWQR) S Ti(ZjPQR), 
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where the last isomorphism is induced by the canonical map WQR 
-+ZJWQR. 

COROLLARY. The map 

ZjW(a):ZjrGl(R) ->ZjWQR 

induces natural homomorphisms ai:Kf(R)-^K"i(R) for all i ^ l . 

In low dimensions it is possible to identify ai. Namely, OL\ is always 
surjective and corresponds to "reduction modulo unipotents." If R is 
(left) regular, then a\ is an isomorphism by a result of Bass, Heller, 
and Swan [ l ] and a2 is surjective by [5, Theorem 6.1 ]. If k is a finite 
field and R = k(t), then a2 is known to be an isomorphism [4]. Also, if 
R is the rationals, one knows that a2 is an isomorphism [9]. 
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