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Let G be a finitely generated nilpotent group and let %(G) denote 
the set of isomorphism classes of finite homomorphic images of G. 
If H is another finitely generated nilpotent group, we will say that 
G and H have isomorphic finite quotients if %(G) —%(H). The finite 
quotients of a finitely generated nilpotent group provide much in­
formation about the structure of the group [3], [5], although they 
do not determine the group up to isomorphism [8, and G. Higman, 
unpublished]. The following result shows, however, that a finitely 
generated nilpotent group is determined to a large extent by its 
finite quotients. 

THEOREM. Let G be a finitely generated nilpotent group. Then the 
finitely generated nilpotent groups Hffor which %(G) = $(H), lie in only 
finitely many isomorphism classes. 

This theorem, which is a much stronger version of an unpublished 
result of A. Borel, is proved by using the Lie algebras of the respec­
tive nilpotent groups [ó], [7] to apply some finiteness results for 
arithmetic subgroups of algebraic groups [4], a technique introduced 
by Auslander and Baumslag [ l ] , [2]. 

OUTLINE OF THE PROOF. We first give some necessary notation and 
state a few fundamental lemmas. If G is a finitely generated nilpotent 
group, we can define a £-adic topology on G for which a neighborhood 
basis of the identity is given by the groups Gp% — gp {xpt| x £ G } . The 
completion of G in this topology will be denoted ZPG. The connection 
between these completions and finite quotients is given by the follow­
ing lemma of Borel: 

LEMMA 1. If G and H are finitely generated nilpotent groups, then 
%{G) = %{H) iff ZVG and ZPH are isomorphic f or each prime p. 

If N is a subgroup of G, then ZPN may be considered to be a sub-

AMS 1969 subject classifications. Primary 2040, 2027. 
Key words and phrases. Isomorphic finite quotients, arithmetic groups, algebraic 

groups, Lie algebras. 
1 A generalization of part of the results of the author's doctoral dissertation written 

under the guidance of G. Baumslag at Rice University, where the author was sup­
ported by a Rice Fellowship. 

Copyright © 1971, American Mathematical Society 

216 



FINITELY GENERATED NILPOTENT GROUPS 217 

group of ZPG and if N is normal in G, ZPN is normal in ZPG and 
ZP(G/N)=ZPG/ZPN. Using this and Lemma 1, it is easy to prove 
the following lemma which allows us to reduce to the torsion free case. 

LEMMA 2. If two finitely generated nilpotent groups G and H have 
isomorphic finite quotients, then their torsion subgroups rG and TH are 
isomorphic and the respective torsion f ree f actor groups G*=G/TG and 
H*=H/TH have isomorphic finite quotients. 

If G is a torsion free finitely generated nilpotent group (an iV-group 
for short), then ZPG is easily seen to be torsion free so we may form 
the Mal'cev completions QG of G and QPG of ZPG [ l l , p. 256]. G and 
H are commensurable iV-groups if and only if QG and QH are iso­
morphic [7]. I t is not too hard to check that if 0 is an isomorphism 
of G onto H, <j> extends uniquely to isomorphisms <j>p:ZpG—:>ZpH and 
<j>:QG-J>QH. Also isomorphisms cf>p:ZpG-*ZpH extend uniquely to 
isomorphisms <j>p:QpG-^QpH and an isomorphism if/lQG-^QH ex­
tends uniquely to isomorphisms \//p:QpG-^QpH. We then may show: 

LEMMA 3. If G and H are N-groups and ip:QG-^QH is an isomor­
phism, then for all but a finite number of primes p, the extension yf/\QpG 
—>QPH sends ZPG isomorphically onto ZPH. 

If H is a subgroup of finite index in an iV-group G, it is easy to see 
that ZPH is of finite index in ZPG. This fact is used in a rather long 
argument following [9] to show: 

LEMMA 4. If H is a subgroup of finite index in an N-group G, then 
there is a subgroup K of Aut(QpG) of finite index in each of 
stab(ZpG, Aut(<2pG)) and stab(ZpH, Aut(QpG)). 

If R is the rational group ring of an iV-group G and B is its augmen­
tation ideal, B is residually nilpotent [ó] so we may form the com­
pletion R* of R in a Hausdorff i3-adic topology. If x is an element of 
B , the usual power series for exp(x) and log( l+x) converge in R 
giving inverse maps between the sets B and 1 + B . Since G is con­
tained in 1+B*, we may consider the Q-vector space A spanned by 
log(G) in B . À is a finite dimensional nilpotent Lie subalgebra of the 
commutation Lie algebra on R [6]. We call À the Lie algebra of G. 
If log(G) is an additive lattice in A, we say G is lattice nilpotent [12]. 

If r is any nilpotent Lie algebra over a field F of characteristic 
zero, we may define a multiplication * on T using the Baker-Campbell-
Hausdorff formula so that the group (I\ *) is a nilpotent group ad­
mitting the action of F (as a set) [ó]. If A is the Lie algebra of the 
iNT-group G, exp gives an isomorphism of the subgroup (log G, *) with 
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G and exp takes (A, *) isomorphically onto a Mal'cev completion 
of G contained in R [ó], [2]. In general, if A and V are nilpotent Lie 
algebras over a field F (char 0) and <f> is a bijective map of F-sets, a 
tedious double induction shows that </> is a Lie algebra isomorphism 
iff <j> is a group theoretic isomorphism of (A, *) onto (I\ *). Using this 
we may prove the following crucial propositions. 

PROPOSITION 5 (BOREL) . Suppose G and H are N-groups with Lie 
algebras T and A respectively. Then QG^QH iff T ^ A and QPG9ÉQPH 

iffQp®QT^QP®QA. 

PROPOSITION 6. If G is a lattice nilpotent group, there is an algebraic 
matric group ® [4, p. 10 ] and, for each prime p, isomorphisms 
5p:Aut(QpG)-j>®Qp which take stab(ZpG, Aut(QpG)) to ®ZP, 
stab(QG, Aut(QpG)) to ©Q and stab(G, Aut QPG) to ®z in such a way 
that for <j> in Aut(ÇG), ôp(<t>) is independent of p in ®Q. (®Q is Aut (A).) 

The following unpublished theorem of A. Borel, which was the 
major motivation for this work, may be proved using Lemma 1, 
Proposition 5, and Theorem 7.11 of [lO]. 

THEOREM 7 (BOREL) . Let G be an N-group. Then the N-groups H for 
which rS(G)=%(H) are contained in finitely many commensurability 
classes. 

For any i\T-group G, we define QA to be the subgroup of UpAut(QpG) 
consisting of elements TL(ap) for which apÇzstab(ZpG, Aut(QpG)) for 
all but a finite number of primes p. We define 9A to be the subgroup of 
2A consisting of elements IL(ap) such that aî>Gstab(Z:PG, Aut(QpG)) 
for all primes p. By Lemma 3 we may embed Aut(QG) diagonally as 
a subgroup 9Q of 9^. 

If H and G are iV-groups, we say H is in the genus of G if %(G) 
= }$(H) and H is commensurable with G. If so, we have isomorphisms 

<f)p\ZpG—>ZpH and yp:QG—*QH which extend to $pt \l/p:QpG—>QpH. 
By Lemma 3, ü ^ " 1 o ipp) is in 9A. Using this construction and follow­
ing the idea of Proposition 2.3 of [4] we may show: 

PROPOSITION 8. The isomorphism classes in the genus of an N-group 
G are in 1-1 correspondence with a subset of the set of double cosets 
S2\<3A/<3Q. 

If G is lattice nilpotent, Proposition 6 and Theorem S.l of [4] imply 
that the number of double cosets is finite. If not, G is a subgroup of 
finite index in a lattice nilpotent group H [12, Theorem 2]. We then 
have $A = 3£A, 9 Q = = ^ Q

 a n d by Lemmas 3 and 4, 9 ! and 3C2 are 
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commensurable. Thus in this case the number of double cosets is 
again finite so we have: 

THEOREM 9. There are only finitely many isomorphism classes of N-
groups in the genus of an N-group G. 

The main theorem then follows from Lemma 2, Theorem 7 and 
Theorem 9. 
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