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Carleson showed in [l ] that the partial sums of the Fourier series of 
a function ƒ £ L 2 [ 0 , 27r] converge almost everywhere. In this note and 
[2] we take up some of the w-dimensional generalizations of the al­
most everywhere convergence theorem. As usual in questions of 
multiple Fourier series, the answers depend on exactly what we mean 
by a "partial sum". For instance, suppose ƒ £L 2 ( [0 , 2w] X [0, 27r]) has 
the double Fourier series ƒ (x, y)~%2m,n~-«> amne

i{mx+nv). Which of the 
following hold almost everywhere? 

(A) f(x, y) = lim £ amneiimx+ny). 
M,N-+*> \m\ikM\ \n\£N 

(B) ƒ(>, y) = lim ] £ amneiimx+nv\ 
M-** \m\t\n\£M 

(C) f(x, y) = lim £ amné^^ny\ 

We shall exhibit below a counterexample to (A). In [2], [3], [4] it is 
shown that (B) and some of its variants are simple consequences of 
Carleson's one-dimensional result. Problem (C) is still open. 

THEOREM 1. There is a continuous f unction on [0, 2ir]X [0, 2w] for 
which (A) holds nowhere. 

To simplify our exposition, we shall first prove a slightly weaker 
result, and then explain how to modify the proof to obtain Theorem 1. 

THEOREM 1'. There is a continuous f unction on [0, 2x] X [0, 2w]for 
which (A) does not hold anywhere in the square Q— {(x, y)\ 1/10g#, 
;y :g27r- l /10} . 

PROOF OF THEOREM 1'. The main idea in our proof is to study the 
partial sums of the double Fourier series of the function f\(xf y) 
= ei\xV defined on [O, 2TT]X[0 , 2TT]. T O do so, we use the Dirichlet 
formula: For/(#, y )~Z) i .n—• amne«mx+ny) defined on [O, 2TT] X [0, 2TT], 
we have 
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SMN/(X9 y) S X) amne
Hmx+nv) 

|m |gM; |n|âiV 

(1) 1 
= — (TMNf(oc, y) - T-MNf(%, y) 

7T 

— TM-NJ(X, y) + T-M-N/(OC, y)) + Error terms 

where, by definition 

ƒ» 2ir •» 2TT e—i(Mx'+Ny') 

7 -7T7 KMirtMty 
o -'o («—ar) (y—y) 

for any real numbers I f and iV. (See [5, Chapter 17, formula 1.12].) 
The reader may easily check that for / = / x and for (x, y)ÇzQ, the 

error terms in (1) are 0(1), and consequently of no importance in 
what follows. 

LEMMA 1. Given any (#, ;y)£Q, we can find integers M and N, for 
which | TMNf\(x, y) \ is as large as log X. 

To prove the lemma, we take M— \\y] and N= [Xx], brackets 
denoting the greatest integer function. By making straightforward 
estimates, we can easily check that changing M = [hy], N= \\x] to 
M=\y, N=\x alters TMNf\(xy y) by at most 0(1). So to prove our 
lemma, we have only to show that 

I
/» 2r /» 2T g—i(\yx'+\xy') 

7 K?—Â eiWtt'dx' dy' 
Jo Jo (x — x){y — y') 

(2) , , 
' -> 2ir f •• 2TT pi\(x—x')(y-y') ƒ» 2ir p •• 2TT giX(:r—af) (i/—j/') -i i 

I dx' \dy'\ 
o L ^ o (« — %')(y — / ) J 

is large. The inner integral on the right-hand side has the form 

dt 
A t 

and consequently satisfies properties 

» 2T ei\(x—x')(y—y') ^ ƒ• 2ir ei\(x—x)(y—y) wj / 1 \ 

—; — ifa/ = - s g n ( y - ƒ ) + O f - - ) 
o (a? — ar) 2 \X | y - y' | / 

(4) 
for (x, y) EQ 

and 
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ƒ• 2 T e%\ (x—x ) (y— y ) 

— — àx' = C w + 0(X | y - y' \ ) 
o (x — x) (5) J 0 (oc — xf) 

for (x, 3/) G Ç , \Cxy\ = 0(1). 

These are just well-known facts about the Dirichlet integral (3), 
heavily camouflaged by notation. 

Using (4) and (5) we can evaluate the right-hand side of (2). In fact, 

• 2T ei\(x-x')(y-y') 

ƒ* 2ir j[ p /» 2T ei\(x—x'){y—yf) - | 
I dx' \dy' 

+ J + J 
0 ^ y - l /X ^ y 

y i -|- 2̂ 2 _}_ y3# 

Using (4), we get 

(6) T1 = — log X + 0(1) and T3 = — log X + 0(1). 

(5) shows that r 2 = 0 ( l ) . Therefore, by equation (2) 

| TMNMX, y)\ = | T1 + T> + T 3 | + 0(1) = TT log X + 0(1). 

This proves the lemma. 
The point is that we were able to cook up the signs so that the 

expected cancellation between Tl and Tz does not occur. 

LEMMA 2. For (x, y)GQ, M=\\y]y N= [Ax], the quantities 
T-MNMX, y), TM-NMXJ y), and T-.M-Nf\{x> y) are all 0(1). 

The proof is just a computation copying the one we just did for 
Lemma 1. This time, however, the signs are not arranged as well as 
before, and the terms analogous to T1 and Tz nearly cancel. Details 
are left to the reader. 

Putting Lemmas 1 and 2 into formula (1) yields our basic in­
equality: For/x, (x, y), and M, N as above, | SMNf\(x, y)\ ^c log X. 
That is, the partial sums of the double Fourier series of f\ grow as 
large as log X throughout <2, despite the fact that ||/x||oo = 1. 

Now it is a routine task to form an infinite series F=y^J*=i Ckf\k1 in 
the spirit of the proof of the uniform boundedness theorem, so that 
lim supM,JV-OO| SMNF(X> y) | = oo for every (x, y) EQ, and yet F is con­
tinuous on [0, 2TT]X [0, 27T]. For example, we can use Cjb = l/22* and 
X* = 2**. Q.E.D. 

Next we sketch how to improve our construction to obtain The-
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orem 1. Let <p(t) be a C00 function on JR1, equal to zero near £ = 0 or 27r, 
and equal to one for 1/20Stlê-2ir —1/20. Then replace f\ by h\(x, y) 
=<p(x)(p(y)eaxv. Lemmas 1 and 2 go through unscathed for h\. 
However, h\ is not merely continuous on [0, 2w]X [0, 27r]; it is also 
continuous on the torus T2 obtained from [0, 27r] X [0, 27r] by identi­
fications. Now instead of ^ Ckf\k we form the infinite series F(x, y) 
= ^ r = i Ckh\k{{x, y) • Tk), where {ck} and {X*} are as before, and { Tk} 
is a sequence of translations on the torus. If the e's, A's, and T's are 
properly picked, F will be a continuous function on the 2-torus, for 
which (A) holds nowhere. 

Our counterexample actually proves more than Theorem 1. 
Specifically, recall the classical theorem of Kolmogoroff-Seliverstoff-
Plessner, which states that the nth partial sum of the Fourier series of 
an L2 function on [0, 2 r ] is 0((log n)112) almost everywhere, as n—> <*>. 
(See [5, Chapter 13, Theorem 1.2].) The proof in [5] generalizes 
easily to k dimensions and yields, in the two-dimensional case, 
maxjtf,N^R| SMNf(x, y)\=o(log R) almost everywhere. Carleson's 
theorem in one dimension provides a dramatic improvement, from 
o ((log n)xl2) to 0(1). However, our counterexample shows that al­
ready in two dimensions the Kolmogoroff-Seliverstoff-Plessner 
theorem essentially cannot be improved. (Nevertheless, see [3] for an 
interesting refinement.) The same is true in any even number of 
dimensions, as follows from repeatedly crossing our counterexample 
with itself. In an odd number of dimensions, the question of the 
growth of partial sums is not completely settled, since the classical 
result is 

max | SM^-.Mj\ = o((log R)kl2) almost everywhere, 

while our example shows only that we cannot hope for more than 

max \SMI...MJ\ =0((log£)<*-i>/2). 
Mit...tMksR 

Note that our counterexample also disproves 

(A*) lim SMNAX, y) = ƒ(#, y). 
Jf,iV-+oo;l/2<ilf/JV<2 
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