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ABSTRACT. By means of the P-algebra Mp(R) of bounded 
energy-finite Tonelli functions on a Riemannian manifold R, we 
construct the P-compactification RP of R as a quotient space of the 
Royden compactification. The P-singular point sp is explicitly 
characterized in terms of the density P. The dimension of the space 
PBE{R) of bounded energy-finite P-harmonic functions on R is 
shown to exceed exactly by one the cardinality of the P-harmonic 
boundary Ap if spGAp. If sp(£Ap one can replace the density P by 
another Q such that dim QBE(R) =dim PBE(R) and a Q-singular 
point does not exist. 

In the study of the equation Au=Pu, PâO, on a Riemannian 
manifold P, it is useful to consider the algebra MP(R) of bounded 
energy-finite Tonelli functions. With Mp(R) one associates the P-
compactification Rp of R on which every ƒ G Mp(R) has a continuous 
extension (Nakai-Sario [4]). An interesting phenomenon is the oc­
currence of the P-singular point s£Rp defined by f(s)=0 for every 
fEMP(R). 

In the present note we construct Rp as a quotient space of the 
Royden compactification P*. Necessary and sufficient for the exis­
tence of an 5 is that Kj|Afp(P). If an s exists, it is unique. We shall 
give an explicit characterization of s in terms of P, thus establishing 
a link with a property considered by Glasner and Katz [2]. 

We then show that if s lies on the P-harmonic boundary Ap, the 
cardinality of AP exceeds exactly by one the dimension of the space 
of bounded energy-finite P-harmonic functions on P. 

If 5 does not lie on APl it is removable in the sense that there exists 
a density Q on R without a ö-singular point such that dim QBE(R) 
= dim PBE(R) = the cardinality of AP. 

1. On a smooth Riemannian w-manifold P, n^2, consider P-
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harmonic functions, i.e. solutions of the elliptic partial differential 
equation 

1 » d / du\ 

Here x = (xl
f • • • , xn) is a local coordinate, (giS) the inverse of the 

matrix (ga) of the fundamental metric tensor of R, g the determinant 
of (gij), and P ( ^ 0 ) a nonnegative continuous function on i?. 

Denote by Mp(R) the algebra of bounded Tonelli functions ƒ on R 
with finite energy integrals ER(J) = ER(ƒ,ƒ). Here the inner product 
ER(J, g) is defined by 

&(/, «) - f [ Ê r ~ ^7 + P/JV, 
J JÎL *,y»i da* d#> J 

with dV the volume element * 1. 
Let fÇzMp(R). Given a regular subregion 0 of R, construct the 

function w o n J? such that u=f on R — Q, and Au = Pu on 0. The 
energy principle (Royden [5]) reads 

EB(u) S Es(f), U E MP(R). 

Ug&Mp(R) and g=Q on i?-S2, then E*(g, w) = 0 . 

2. Denote by Af(i?) the Royden algebra and by R* the Royden 
compactification of R (cf. e.g. Chang-Sario [ l ] and Sario-Nakai 
[ó]). In view of MP(R)C.M(R) every function fE.MP(R) has a 
continuous extension to R*. 

For x, ? £ # * set x~y if ƒ(*) =/(y) for all fEMP(R). Clearly " ~ w 

is an equivalence relation. Denote by Rp the quotient space R*/~. 
Let ^pi-R*—>i?p be the natural projection. 

PROPOSITION 1. The space Rp endowed with the quotient topology is 
a compact Hausdorff space and contains R as a connected open dense 
subset. 

PROPOSITION 2. Every f unction in Mp(R) has a continuous extension 
to Rp, and Mp(R) separates points in Rp. 

We shall call Rp the P-compactification and Mp(R) the P-algebra 
of i?. For the continuations of f(E.Mp(R) to R* and Rp we use the 
same notation ƒ. 

P-regularity can be given the following explicit characterization: 

3. A point xÇzRp will be called P-regular or P-singular according 
as there does or does not exist a function ƒ £ Mp(R) with ƒ (x) 5*0. By 
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virtue of Proposition 2 a P-singular point is unique, if it exists. 

THEOREM 1. A point x&Rp is P-regular if and only if the density 
function P has a finite integral at x, i.e. there exists an open neighbor­
hood Uofx in Rp with JUOR P d V< <*>. 

PROOF. If x is P-regular, there exists a function fCzMP(R) with 
f(x)^0. Choose €>0 such that |jf(*)| >e. Then U= {y£R$\ \f(y)\ 
> e} is an open neighborhood of x in Pp. Since 

f PdVS^f PfdVS±-ER(f), 
J UDR e2 J UDR e* 

P has a finite integral at x. 
Conversely suppose that there exists an open neighborhood U of x 

in Rp with JUHR PdV< oo. Since R*—TP~1(U) and Tpl(x) are disjoint 
closed sets in P*, we can choose a function gE;M(R) such that 
0 è g S 1 , gl^ix) s i , and g\ P * - T T P \ U ) = 0 . Then we have 

f Pg2 dV = f Pg2 d 7 + f Pg2 dV 

S f PdV = f P J F < oo. 
J Rn*pl{U) J RdU 

Thus gE:Mp{R) and g(#) = 1, i.e. a; is P-regular. 
-4 £0iw/ s(ERp is P-singular if and only if furiR PdV= oo for each 

open neighborhood U of s in Rp. 
REMARK. If there exist no P-singular points, then we have the 

special case Rp=R* studied in Royden [5]. In our note we assume 
that s exists. The concept of a P-singular point was introduced in 
Nakai-Sario [4], and the term "P has a finite integral a t x" in 
Glasner-Katz [2]. 

4. We wr i t e /=BE- l im n / n on R if the sequence {fn} is uniformly 
bounded on P , converges to ƒ uniformly on compact subsets of P , 
and ER(fn— ƒ)—»0 as n—»oo. In view of the BD-completeness of 
Royden's algebra M(R) (e.g. Sario-Nakai [ó]) it is not difficult to see 
that the P-algebra MP(R) is BE-complete. 

Let Ap = 7Tp(A) and denote by Mpo(R) the space of functions in 
MP(R) with compact supports in P , and by MP&(R) the space of 
BE-limits in MP(R) of functions in Mpo{R). As in the case of the 
potential subalgebra MA(P) (cf. [3 ]) we have the duality: 

PROPOSITION 3. MPà(R) = {fEMP(R)\ f=0 onAP}. 

PROOF. I t suffices to show that 
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MPà(R) « {ƒ G Jf p(*) | / - 0 on A}. 

Since MPà(R)CMà(R), MPà(R)C{fEMp(R)\f^O on A} (cf. 
[3]). Conversely, suppose that / £ i f p ( P ) vanishes identically on A. 
Since MP(R) is a lattice, we may assume that ƒ ^ 0 . Choose a se­
quence {ƒ»} of functions in M(R) with compact supports in R such 
that O g / n é / and / = B D - l i m „ / n on R. By Lebesgue's dominated 
convergence theorem 

f pf dV = lim f Pfl dV. 

Consequently ƒ £ MPA(R) as desired. 

COROLLARY. MP±(R) is an ideal of MP(R). 

5. We turn to the vector space PBE(R) of bounded energy-finite 
P-harmonic functions on R. 

We maintain (for Royden's compactification cf. Glasner-Katz 
[2]): 

THEOREM 2. The vector space PBE(R) is m-dimensional if and only 
if the P-harmonic boundary AP consists of m+1 points whenever 
s(EAp- If s does not lie on Ap, then dim PBE(R) equals the cardinality 
of AP. 

For the proof we first establish the othogonal decomposition: 

LEMMA 1. MP(R)=PBE(R) ®MP&(R). 

PROOF. Let ƒ £ ikfp(P). Since Mp(R) is a vector lattice we may 
assume t h a t / è 0 on R. 

For a regular exhaustion {Rn} of R consider the functions un 

E;MP(R) such that unGPBE(Rn) and un~f on P - P n . By the 
energy principle (cf. 1), 

ER{un) SER{f) < 00, 

ER{un) = ER(un+p) + ER(un+p — Un) 

for all «, p^\. Hence {un} is £-Cauchy. Since it is uniformly 
bounded on R, we may assume that it converges to a P-harmonic 
function, uniformly on compact subsets of R (cf. Royden [5]). 

Set # = BE-limn un and g = BE-limn (ƒ— un) on R. Then f=u+g is 
the desired decomposition. Its uniqueness is obvious by the definition 
of MP*(R). 

LEMMA 2. REOPBE — OG if and only if AP= {s}. 
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PROOF. If AP = {s}, MP(R) - MP±(R) and PBE(R) « {0}. 
Conversely, suppose that there exists a P-regular point x in Ap. 

Choose open neighborhoods Z7, F of 5 in Rp such that #(££/ and 
VCU. Since T T J ^ F ) and T^ÇR?— U) are disjoint closed sets in R* 
we can construct an f(EMp(R) with 0 ^ / ^ l , / [ T T P ^ T J S O , and 

Let f=u+g be the decomposition in Lemma 1. Then u is a non-
constant PBE-iunction and therefore RQZOPBE — OG. 

PROOF OF THEOREM 2. Let {#i, • • • , xm) be a finite subset of 
Ap - 5 . As in the proof of Lemma 2, we can construct nonconstant 
functions U{ in PBE(R) with w»(xy) = ôt> Since the Ui are linearly 
independent, dim PBE(R) = «> whenever Ap is an infinite set. 

Suppose that the cardinality of AP is tn+1 and that sEA P . For 
any uEPBE(R), u-J^1u(xi)uiEPBE(R)r\MPA(R)=-{o} and 
we conclude that dim PBE(R) = m is the cardinality of Ap—5. 

The proof in the case in which the cardinality of Ap is finite and 
s(£Ap is the same. 

6. We have seen that the dimension of the space PBE(R) is equal 
to the cardinality of the P-harmonic boundary whenever the P -
singular point s does not lie on Ap. Thus the existence of 5 in this 
case is, in a sense, of little significance as far as the relation of PBE(R) 
and Ap is concerned. I t is natural to ask: Can one replace the density 
P by another, (?, such that dim PBE(R)= dim QBE(R), and a Ç-
singular point does not exist? 

First we prove: 

THEOREM 3. The P-singular point s lies on Rp—AP if and only if 
there exists a PBE-f unction uonR such that « = 1 on Ap. 

PROOF. The necessity is trivial since PBE(R)GMP(R). For the 
sufficiency choose an fxÇE.Mp(R) for a given # £ A p such that / x â 0 
and ƒ*(#)>(). Since Ap is compact we can construct a function 
fEMp(R) with ƒ àO and ƒ | A P > 0 . Set a = minAp/ > 0 , and l e t o r K / ^ a ) 
= w+g be the decomposition in Lemma 1. Then u has the required 
property. 

THEOREM 4. If P , Q are densities on R which coincide on an open 
neighborhood U of A in R*t then dim PBE(R) =d im QBE(R). 

PROOF. First we show that Ap and AQ have the same cardinality. 
Let TTp:R*—*Rp be the natural projection and let 7TP(X) 7^Tp(y) for 
x, y G A. Then there exists a function fÇzMp{R) with f(x)j^f(y). 
Choose an open neighborhood F of A in R* such that F C U and a 
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function gEM(R) such that O ^ g ^ l , g\V*=l, and g | P * - ï / s s O . 
Clearly fgGMQ(R) and (ƒ«)(*) ^(/fc)(y)» i.e. *-Q(*)*T0(y). We 
infer that the cardinalities of Ap and AQ coincide, and therefore 
dim PBE(R) = oo if and only if dim QBE(R) = oo. 

Let the common cardinality of Ap and AQ be k<<*>. If the P -
singular point Sp belongs to AP, choose # E A such that wP(x)=Sp. 
Then it is easily seen that TQ(X) is the Q-singular point and TQ(X) 
G A Q . By Theorem 2 it follows that dim PBE(R) = dim QBE(R) 
= k — l (resp. k) if sp£Ap (resp. sp(£Ap). 

If a P-singular point sp exists but does not lie on Ap, then it may 
be called a "removable" P-singular point in the following sense: 

THEOREM 5. If the P-singular point sp lies on Rp—AP} there exists 
a density Q on R such that dim QBE(R) =d im PBE(R) and JRQdV 
<oo. 

PROOF. Choose open neighborhoods U, V of sp in RP such that 
VCU and 7 / n A P = 0 . Since ir^ÇV) and R^-Tp^U) are disjoint 
closed subsets of P * there exists a function ƒ £ Mp(P) with 0 ^ / ^ l , 
/ I T T ^ C F ^ O , and/IP^TTp^CO^l. 

Set <2=/2P. Then ƒ« QdV=fR PfdVg,ER(f)< oo, and by The­
orem 4 we have dim QBE(R) =d im PBE(R). 
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