THE P-SINGULAR POINT OF THE P-COM-PACTIFICATION FOR $\Delta u = Pu^1$

BY Y. K. KWON AND L. SARIO

Communicated by F. W. Gehring, April 13, 1970

ABSTRACT. By means of the P-algebra $M_P(R)$ of bounded energy-finite Tonelli functions on a Riemannian manifold R, we construct the P-compactification R_P^* of R as a quotient space of the Royden compactification. The P-singular point s_P is explicitly characterized in terms of the density P. The dimension of the space PBE(R) of bounded energy-finite P-harmonic functions on R is shown to exceed exactly by one the cardinality of the P-harmonic boundary Δ_P if $s_P \in \Delta_P$. If $s_P \notin \Delta_P$ one can replace the density P by another Q such that dim $QBE(R) = \dim PBE(R)$ and a Q-singular point does not exist.

In the study of the equation $\Delta u = Pu$, $P \ge 0$, on a Riemannian manifold R, it is useful to consider the algebra $M_P(R)$ of bounded energy-finite Tonelli functions. With $M_P(R)$ one associates the P-compactification R_P^* of R on which every $f \in M_P(R)$ has a continuous extension (Nakai-Sario [4]). An interesting phenomenon is the occurrence of the P-singular point $s \in R_P^*$ defined by f(s) = 0 for every $f \in M_P(R)$.

In the present note we construct R_P^* as a quotient space of the Royden compactification R^* . Necessary and sufficient for the existence of an s is that $1
otin M_P(R)$. If an s exists, it is unique. We shall give an explicit characterization of s in terms of P, thus establishing a link with a property considered by Glasner and Katz [2].

We then show that if s lies on the P-harmonic boundary Δ_P , the cardinality of Δ_P exceeds exactly by one the dimension of the space of bounded energy-finite P-harmonic functions on R.

If s does not lie on Δ_P , it is removable in the sense that there exists a density Q on R without a Q-singular point such that dim QBE(R) = dim PBE(R) = the cardinality of Δ_P .

1. On a smooth Riemannian *n*-manifold R, $n \ge 2$, consider P-

AMS 1969 subject classifications. Primary 3045, 3111.

Key words and phrases. P-algebra, P-compactification, P-regular point, P-singular point, P-harmonic boundary, PBE-function.

¹ The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-70-G7, University of California, Los Angeles.

Copyright @ 1971, American Mathematical Society

harmonic functions, i.e. solutions of the elliptic partial differential equation

$$\frac{1}{\sqrt{g}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x^{i}} \left(\sqrt{g} g^{ij} \frac{\partial u}{\partial x^{j}} \right) = Pu.$$

Here $x = (x^1, \dots, x^n)$ is a local coordinate, (g^{ij}) the inverse of the matrix (g_{ij}) of the fundamental metric tensor of R, g the determinant of (g_{ij}) , and $P (\neq 0)$ a nonnegative continuous function on R.

Denote by $M_P(R)$ the algebra of bounded Tonelli functions f on R with finite energy integrals $E_R(f) = E_R(f, f)$. Here the inner product $E_R(f, g)$ is defined by

$$E_R(f, g) = \int_R \left[\sum_{i,j=1}^n g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial x^j} + Pfg \right] dV,$$

with dV the volume element * 1.

Let $f \in M_P(R)$. Given a regular subregion Ω of R, construct the function u on R such that $u \equiv f$ on $R - \Omega$ and $\Delta u = Pu$ on Ω . The energy principle (Royden [5]) reads

$$E_R(u) \leq E_R(f), \quad u \in M_P(R).$$

If $g \in M_P(R)$ and $g \equiv 0$ on $R - \Omega$, then $E_R(g, u) = 0$.

2. Denote by M(R) the Royden algebra and by R^* the Royden compactification of R (cf. e.g. Chang-Sario [1] and Sario-Nakai [6]). In view of $M_P(R) \subset M(R)$ every function $f \in M_P(R)$ has a continuous extension to R^* .

For x, $y \in R^*$ set $x \sim y$ if f(x) = f(y) for all $f \in M_P(R)$. Clearly " \sim " is an equivalence relation. Denote by R_P^* the quotient space R^*/\sim . Let $\pi_P: R^* \to R_P^*$ be the natural projection.

PROPOSITION 1. The space R_P^* endowed with the quotient topology is a compact Hausdorff space and contains R as a connected open dense subset.

PROPOSITION 2. Every function in $M_P(R)$ has a continuous extension to R_P^* , and $M_P(R)$ separates points in R_P^* .

We shall call R_P^* the *P*-compactification and $M_P^*(R)$ the *P*-algebra of R. For the continuations of $f \in M_P(R)$ to R^* and R_P^* we use the same notation f.

P-regularity can be given the following explicit characterization:

3. A point $x \in \mathbb{R}_P^*$ will be called *P-regular* or *P-singular* according as there does or does not exist a function $f \in M_P(\mathbb{R})$ with $f(x) \neq 0$. By

virtue of Proposition 2 a P-singular point is unique, if it exists.

THEOREM 1. A point $x \in R_P^*$ is P-regular if and only if the density function P has a finite integral at x, i.e. there exists an open neighborhood U of x in R_P^* with $\int_{U \cap R} P \, dV < \infty$.

PROOF. If x is P-regular, there exists a function $f \in M_P(R)$ with $f(x) \neq 0$. Choose $\epsilon > 0$ such that $|f(x)| > \epsilon$. Then $U = \{y \in R_P^* | |f(y)| > \epsilon\}$ is an open neighborhood of x in R_P^* . Since

$$\int_{U\cap R} P \ dV \leq \frac{1}{\epsilon^2} \int_{U\cap R} Pf^2 \ dV \leq \frac{1}{\epsilon^2} E_R(f),$$

P has a finite integral at x.

Conversely suppose that there exists an open neighborhood U of x in R_P^* with $\int_{U\cap R} P \, dV < \infty$. Since $R^* - \pi_P^{-1}(U)$ and $\pi_P^{-1}(x)$ are disjoint closed sets in R^* , we can choose a function $g \in M(R)$ such that $0 \le g \le 1$, $g \mid \pi_P^{-1}(x) \equiv 1$, and $g \mid R^* - \pi_P^{-1}(U) \equiv 0$. Then we have

$$\int_{R} Pg^{2} dV = \int_{R \cap \pi_{P}^{1}(U)} Pg^{2} dV + \int_{R - \pi_{P}^{1}(U)} Pg^{2} dV$$

$$\leq \int_{R \cap \pi_{P}^{1}(U)} P dV = \int_{R \cap U} P dV < \infty.$$

Thus $g \in M_P(R)$ and g(x) = 1, i.e. x is P-regular.

A point $s \in \mathbb{R}_P^*$ is P-singular if and only if $\int_{U \cap \mathbb{R}} P dV = \infty$ for each open neighborhood U of s in \mathbb{R}_P^* .

REMARK. If there exist no P-singular points, then we have the special case $R_P^* = R^*$ studied in Royden [5]. In our note we assume that s exists. The concept of a P-singular point was introduced in Nakai-Sario [4], and the term "P has a finite integral at x" in Glasner-Katz [2].

4. We write $f = \text{BE-lim}_n f_n$ on R if the sequence $\{f_n\}$ is uniformly bounded on R, converges to f uniformly on compact subsets of R, and $E_R(f_n-f) \to 0$ as $n \to \infty$. In view of the BD-completeness of Royden's algebra M(R) (e.g. Sario-Nakai [6]) it is not difficult to see that the P-algebra $M_P(R)$ is BE-complete.

Let $\Delta_P = \pi_P(\Delta)$ and denote by $M_{PO}(R)$ the space of functions in $M_P(R)$ with compact supports in R, and by $M_{P\Delta}(R)$ the space of BE-limits in $M_P(R)$ of functions in $M_{PO}(R)$. As in the case of the potential subalgebra $M_{\Delta}(R)$ (cf. [3]) we have the duality:

Proposition 3.
$$M_{P\Delta}(R) = \{ f \in M_P(R) | f \equiv 0 \text{ on } \Delta_P \}.$$

Proof. It suffices to show that

$$M_{P\Delta}(R) = \{ f \in M_P(R) \mid f \equiv 0 \text{ on } \Delta \}.$$

Since $M_{P\Delta}(R) \subset M_{\Delta}(R)$, $M_{P\Delta}(R) \subset \{f \in M_P(R) \mid f \equiv 0 \text{ on } \Delta\}$ (cf. [3]). Conversely, suppose that $f \in M_P(R)$ vanishes identically on Δ . Since $M_P(R)$ is a lattice, we may assume that $f \geq 0$. Choose a sequence $\{f_n\}$ of functions in M(R) with compact supports in R such that $0 \leq f_n \leq f$ and $f = \mathrm{BD\text{-}lim}_n f_n$ on R. By Lebesgue's dominated convergence theorem

$$\int_{R} Pf^{2} dV = \lim_{n \to \infty} \int_{R} Pf_{n}^{2} dV.$$

Consequently $f \in M_{P\Delta}(R)$ as desired.

COROLLARY. $M_{P\Delta}(R)$ is an ideal of $M_P(R)$.

5. We turn to the vector space PBE(R) of bounded energy-finite P-harmonic functions on R.

We maintain (for Royden's compactification cf. Glasner-Katz [2]):

THEOREM 2. The vector space PBE(R) is m-dimensional if and only if the P-harmonic boundary Δ_P consists of m+1 points whenever $s \in \Delta_P$. If s does not lie on Δ_P , then dim PBE(R) equals the cardinality of Δ_P .

For the proof we first establish the othogonal decomposition:

LEMMA 1.
$$M_P(R) = PBE(R) \oplus M_{P\Delta}(R)$$
.

PROOF. Let $f \in M_P(R)$. Since $M_P(R)$ is a vector lattice we may assume that $f \ge 0$ on R.

For a regular exhaustion $\{R_n\}$ of R consider the functions $u_n \in M_P(R)$ such that $u_n \in PBE(R_n)$ and $u_n \equiv f$ on $R-R_n$. By the energy principle (cf. 1),

$$E_R(u_n) \leq E_R(f) < \infty,$$

$$E_R(u_n) = E_R(u_{n+p}) + E_R(u_{n+p} - u_n)$$

for all n, $p \ge 1$. Hence $\{u_n\}$ is E-Cauchy. Since it is uniformly bounded on R, we may assume that it converges to a P-harmonic function, uniformly on compact subsets of R (cf. Royden [5]).

Set $u = \text{BE-lim}_n u_n$ and $g = \text{BE-lim}_n (f - u_n)$ on R. Then f = u + g is the desired decomposition. Its uniqueness is obvious by the definition of $M_{P\Delta}(R)$.

LEMMA 2.
$$R \in O_{PBE} - O_G$$
 if and only if $\Delta_P = \{s\}$.

PROOF. If $\Delta_P = \{s\}$, $M_P(R) = M_{P\Delta}(R)$ and $PBE(R) = \{0\}$.

Conversely, suppose that there exists a P-regular point x in Δ_P . Choose open neighborhoods U, V of s in R_P^* such that $x \notin U$ and $\overline{V} \subset U$. Since $\pi_P^{-1}(\overline{V})$ and $\pi_P^{-1}(R_P^* - U)$ are disjoint closed sets in R^* we can construct an $f \in M_P(R)$ with $0 \le f \le 1$, $f \mid \pi_P^{-1}(\overline{V}) = 0$, and $f \mid \pi_P^{-1}(R_P^* - U) = 1$.

Let f=u+g be the decomposition in Lemma 1. Then u is a non-constant PBE-function and therefore $R \notin O_{PBE} - O_G$.

PROOF OF THEOREM 2. Let $\{x_1, \dots, x_m\}$ be a finite subset of $\Delta_P - s$. As in the proof of Lemma 2, we can construct nonconstant functions u_i in PBE(R) with $u_i(x_j) = \delta_{ij}$. Since the u_i are linearly independent, dim $PBE(R) = \infty$ whenever Δ_P is an infinite set.

Suppose that the cardinality of Δ_P is m+1 and that $s \in \Delta_P$. For any $u \in PBE(R)$, $u - \sum_{i=1}^m u(x_i)u_i \in PBE(R) \cap M_{P\Delta}(R) = \{0\}$ and we conclude that dim PBE(R) = m is the cardinality of $\Delta_P - s$.

The proof in the case in which the cardinality of Δ_P is finite and $s \oplus \Delta_P$ is the same.

6. We have seen that the dimension of the space PBE(R) is equal to the cardinality of the P-harmonic boundary whenever the P-singular point s does not lie on Δ_P . Thus the existence of s in this case is, in a sense, of little significance as far as the relation of PBE(R) and Δ_P is concerned. It is natural to ask: Can one replace the density P by another, Q, such that dim $PBE(R) = \dim QBE(R)$, and a Q-singular point does not exist?

First we prove:

THEOREM 3. The P-singular point s lies on $R_P^* - \Delta_P$ if and only if there exists a PBE-function u on R such that $u \equiv 1$ on Δ_P .

PROOF. The necessity is trivial since $PBE(R) \subset M_P(R)$. For the sufficiency choose an $f_x \in M_P(R)$ for a given $x \in \Delta_P$ such that $f_x \ge 0$ and $f_x(x) > 0$. Since Δ_P is compact we can construct a function $f \in M_P(R)$ with $f \ge 0$ and $f \mid \Delta_P > 0$. Set $\alpha = \min_{\Delta P} f > 0$, and let $\alpha^{-1}(f \cap \alpha) = u + g$ be the decomposition in Lemma 1. Then u has the required property.

THEOREM 4. If P, Q are densities on R which coincide on an open neighborhood U of Δ in R^* , then $\dim PBE(R) = \dim QBE(R)$.

PROOF. First we show that Δ_P and Δ_Q have the same cardinality. Let $\pi_P: R^* \to R_P^*$ be the natural projection and let $\pi_P(x) \neq \pi_P(y)$ for $x, y \in \Delta$. Then there exists a function $f \in M_P(R)$ with $f(x) \neq f(y)$. Choose an open neighborhood V of Δ in R^* such that $\overline{V} \subset U$ and a

function $g \in M(R)$ such that $0 \le g \le 1$, $g \mid \overline{V} = 1$, and $g \mid R^* - U = 0$. Clearly $fg \in M_Q(R)$ and $(fg)(x) \ne (fg)(y)$, i.e. $\pi_Q(x) \ne \pi_Q(y)$. We infer that the cardinalities of Δ_P and Δ_Q coincide, and therefore dim $PBE(R) = \infty$ if and only if dim $QBE(R) = \infty$.

Let the common cardinality of Δ_P and Δ_Q be $k < \infty$. If the P-singular point s_P belongs to Δ_P , choose $x \in \Delta$ such that $\pi_P(x) = s_P$. Then it is easily seen that $\pi_Q(x)$ is the Q-singular point and $\pi_Q(x) \in \Delta_Q$. By Theorem 2 it follows that dim $PBE(R) = \dim QBE(R) = k-1$ (resp. k) if $s_P \in \Delta_P$ (resp. $s_P \notin \Delta_P$).

If a P-singular point s_P exists but does not lie on Δ_P , then it may be called a "removable" P-singular point in the following sense:

THEOREM 5. If the P-singular point s_P lies on $R_P^* - \Delta_P$, there exists a density Q on R such that dim $QBE(R) = \dim PBE(R)$ and $\int_R Q \ dV < \infty$.

PROOF. Choose open neighborhoods U, V of s_P in R_P^* such that $\overline{V} \subset U$ and $\overline{U} \cap \Delta_P = \emptyset$. Since $\pi_P^{-1}(\overline{V})$ and $R^* - \pi_P^{-1}(U)$ are disjoint closed subsets of R^* there exists a function $f \in M_P(R)$ with $0 \le f \le 1$, $f \mid \pi_P^{-1}(\overline{V}) \equiv 0$, and $f \mid R^* - \pi_P^{-1}(U) \equiv 1$.

Set $Q=f^2P$. Then $\int_R Q \, dV = \int_R P f^2 \, dV \le E_R(f) < \infty$, and by Theorem 4 we have dim $QBE(R) = \dim PBE(R)$.

BIBLIOGRAPHY

- 1. J. Chang and L. Sario, Royden's algebra on Riemannian spaces, Math. Scand-(to appear).
- 2. M. Glasner and R. Katz, On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary, J. Analyse Math. 22 (1969), 343-354.
- 3. Y. K. Kwon and L. Sario, A maximum principle for bounded harmonic functions on Riemannian spaces, Canad. J. Math. (to appear).
- 4. M. Nakai and L. Sario, A new operator for elliptic equations, and the P-compactification for $\Delta u = Pu$, Math. Ann. (to appear).
- 5. H. L. Royden, The equation $\Delta u = Pu$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI No. 271 (1959), pp. 27. MR 22 #12215.
- 6. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970.

University of California, Los Angeles, California 90024