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1. Introduction. In this note we state some results concerning the 
structure of a function which is the Fatou limit, on the distinguished 
boundary, of a bounded holomorphic function in a product of half-
planes. Such a function is, equivalently, an element of Lw(Rn) whose 
(distributional) Fourier transform is supported in the "first quad­
rant", i.e. the set 

Q+ = {x;xi è 0, • • • yXn è O}. 

A typical result (consequence of Theorem 1) is that if such a function 
tends to a limit X as x—»x° from inside an open cone with vertex at x°, 
then it tends "on the average" to X as x—>x° from inside any open cone 
with vertex at x°. In particular, if such a function tends to limits in 
each of two open cones with a common vertex, these limits must be 
equal; for n = l (when the cones are half-lines), this is a classical 
theorem of Pringsheim and Lindelof. Theorem 2 is a Tauberian the­
orem for H00 boundary values; specialized to one variable it yields 
(among other things) a new proof of Lindelöfs theorem that a 
bounded analytic function which tends to a limit radially does so also 
within an angle, as well as an apparently new relation between the 
average behaviour of an JÏ00 boundary function to the left, and that to 
the right, of a given point. Theorem 3 shows that a much stronger 
localization of uniform convergence for, say, Fejér means, is valid for 
if00 boundary functions than for bounded measurable functions gener­
ally; for example, if the restriction of an i?00 boundary function to a 
closed ball in Rn is continuous, the Fejér means converge to it uni­
formly on the closed ball, not merely on subballs of smaller radius. 

2. Notation and preliminary results. Let P denote the open upper 
half-plane in the complex s-plane, and R (the real axis) its boundary. 
By Pn we denote the Cartesian product of n copies of P , and Rn is 
then the distinguished boundary of P n . We use usual vector nota-
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tions, denoting by z = (01, • • • , zn) a point of Pn , Zj~Xj+iyj, and by 
x = (xi, • • • , xn) a point of Rn; dx denotes Lebesgue measure in i?n, 
and a, b positive scalars. 

By Hcc(Pn) we denote the set of bounded holomorphic functions in 
Pn . To each ƒ Gil00 (Pn) is uniquely associated an element <p of L°°(i?w), 
its boundary function, by the Fatou relation 

lim f(%i + ia, • • • , xn + id) = P(#I, • • • , xn) a.e. 
a-»0 

We can recover/ from <p by the Poisson formula 

(2.1) ƒ(«) = f<p(x-Qp&y)dt 

(here and elsewhere the integration is over i?n if not specified other­
wise) where 

(2.2) f (*, y) = T~n ft »(** + » f *• 

By H"(Rn) we denote the set of boundary functions of elements of 

For hGLx(Rn), we write h(a)(x) =a~nh(a-1x). Finally, £(#, a) de­
notes the closed ball in Rn with center x and radius a. 

3. Main results. 

THEOREM 1. Let <pE.H^(Rn)f x°ÇzRn, and suppose there exist 
X£C, &>0, and a function <r(a) tending to zero as a—>0, with the follow­
ing properties. For each a ^ l , B(x°, a) contains a ball Ka of radius ba 
such that ess sup | <p(x) —X|, xÇzKai does not exceed cr(a). Then, for every 
k<ELl(Rn), 

(3.1) (<p* k(a))(x°) = I <p(x° — ax)h{x)dx—» I £(3:)d# 

as a—>0. 

REMARK 3.1. Clearly, if <p(x)~-»X as x—»#° within an open cone with 
vertex at x° the hypothesis is satisfied. 

COROLLARY 3.2. Under the hypotheses of Theorem lfifK is any open 
cone with vertex at x°, the mean value of <p over Kr\B(x°, a) tends to X as 
a—>0. 

PROOF. Without loss of generality suppose x° is the origin. Choosing 
k so that k(—x) is the characteristic function of Kr\B(x°, 1) gives the 
result. 
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COROLLARY 3.3. Under the hypotheses of Theorem 1, if <p is the 
boundary function of f E;H*{Pn), then lima+o f (x°i+ia, • • -, xl+ia)-\. 

PROOF. In view of (2.1) and (2.2), 

f(xx + ia, • • • ,xn + ia) = (v * j<a>)(«°), 

where q(x) =7r"1(l+#i)~1 • • • (1+tf»)""1- Hence, choosing q for k in 
(3.1) gives the result. 

THEOREM 2. Z,e/ G denote a subset of Ll(Rn) such that no nonnull 
\l/&H">(Rn) satisfies 

(3.2) I \{/(ax)g(x)dx = 0, allg&G, a> 0. 

If<pEH"(Rn) satisfies 

lim I ¥>(aa;)g(ff)rf# = X I g(x)dx9 all g G G, 
a—»0 •/ »J 

tóe» 

lim J <p(ax)h(x)dx = X I A(*)i«, aM & £ L 1 ^ ) . 

REMARK 3.4. We give three examples, for n = 1, of G for which the 
hypothesis is easily verified. In each example, G consists of a single 
function g. 

(i) g is the characteristic function of [0,1 ], 
(ii) g is the characteristic function of [ — 1,1 ], 
(iii) g(x)=(l+x*)~\ 
Hence, if (pE.HM(R) satisfies 

(3.3) lim I <p(aa;)g(ff)<fo = X I g(#)<te 

for any one of these g, it satisfies (3.3) for every gSLx(R). In par­
ticular, the choice of g in (iii) yields 

COROLLARY 3.5. If fGHw(P) satisfies lima+o f (ia) =X, ite boundary 
function (p satisfies (3.3) for every gÇELl(R). 

From this it is quite easy to deduce that f(z)—>\ as 2—»0 in a Stolz 
angle (Lindelof s theorem). Other specializations of g lead to these 
typical results:1 

1 (Cf. next page, line 2.) 
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COROLLARY 3.6. If <pE:Hw(R) satisfies lima+o a*1 f%<p(x)dx=\ then 
lima-*o crxJ% <p(x)dx ==X. 

COROLLARY 3.7. If (pE:Hw{R) satisfies Yima^{2a)-lfla<p{x)dx=X 
then lima^o CT1JQ <p(x)dx =X. 

The last three corollaries can also be proved quite directly by 
means of Wiener's Tauberian theorem; our proofs are however 
simpler, and independent of Wiener's theorem. 

DEFINITION. A compact set E(ZRn is well-rounded if constants &, 8 
can be found such that for every xÇzE and a^b} Er\B(x, a) contains 
a ball of radius 8a. 

EXAMPLES. A closed interval in R is well-rounded (we can take 
ô = ̂ ) ; a polygonal region in R2, or any region with piecewise smooth 
boundary and no cusps, is well-rounded. 

THEOREM 3. Let E be a well-rounded compact set in Rn. Suppose <p is 
in H°°(Rn) and coincides ax. on E with a continuous f unction <po. Then, 
if k is any integrable function on Rn satisfying ƒ kdx = l, (<p*k(a))(x) 
converges to <po(x)f uniformly f or xGE, as a—>0. 

REMARK 3.8. If F is bounded and holomorphic in the unit poly-
disc Un (see Rudin [2]), and $ its boundary function on the torus Tn, 
then f{zu • • • , zn) = F(exp[izi], • • • , exp[^n]) is in H°°{Pn) and its 
boundary function is $(exp[ôjci], • • • , exp[ixn]). This enables us to 
apply the results of this paper to the polydisc-torus framework. In 
particular, Theorem 3 implies that quite general summability 
methods, applied to the Fourier series of $, converge uniformly on 
well-rounded subsets of Tn where 3> is continuous ("well-rounded" 
being suitably redefined for the torus). For example, taking # = 1, 
k(x) =7r~"1(sin x/x)2, we deduce that the Fejér means of the partial 
sums of the Fourier series of QEiH^iT) converge uniformly to $ on 
each closed interval to which the restriction of $ is continuous. 

4. Method of proof. Full details shall be given elsewhere; here we 
merely indicate the main ideas. The proofs are by "soft analysisw, 
based upon two crucial properties of H°°(Rn) : 

(i) jff°°(jRn) is a weak* closed subspace of L°°(i?n). 
(ii) Quasi-analyticity: a function in H°°(Rn) which vanishes on a 

ball (or even on a set of positive measure) vanishes identically. 
Let us write (<p, g) to denote f<p(x)g(—x)dx, and define 0JEJr°°(i?n) 

- {gELl(R%) :<*>, g) =0 for aü<pEH"(R*)}. 

LEMMA4.1. GivenhGL1(Rn)ye>Ofb<iythereisaconstantC(htet b) 
such that if B is any ball of radius b lying in the unit ball of Rn, there 
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exists g^H"(Rn) such that \\g\\xS C(h, €, b) and 

(4.1) f | h(x) - g(x) | dx < €. 
J R"\B 

PROOF (OUTLINE). For each B, the existence of gE°Hw(Rn) 
satisfying (4.1) follows by a standard duality argument from (i) and 
(ii). A compactness argument allows an estimate for Hg^ independent 
of the particular choice of B. 

PROOF OF THEOREM 1. Without loss of generality, take #° = origin, 
X = 0.Wehave 

I <p(ax)k(—x)dx = I <p(ax)(k(—x) — g(x))dx 

where g=gais an element of 0i3"°°(i?n) that is at our disposal (here, in a 
nutshell, is the essence of our method). 

By hypothesis, J3(0, a) contains a ball Ka of radius ba on which 
ess sup | <p(x) | gcr(a), hence on the ball Ja —a"lKai which is contained 
in the unit ball and has radius 6, ess sup | <p(ax) \ ^<r(a). Now apply the 
lemma, with h{x) =£( — x) ; we get, for a suitable g —ga,* in QH°°(Rn) 

I <p(ax)k(—x)dx\ = I (p(ax)[k(—x) — g(x)]dx 

+ I (p(ax)[k(—x) — g(x)]da 
J Bn\ja 

hence 

â cr(a)([|&[U + C(fe, c, 6)) + ||dU'€, 

lim sup | (p(ax)k(~-x)dx ^ IMU#€ 

and, € being arbitrary, the lim sup is zero. 
PROOF OF THEOREM 2. We may suppose X=0. Define 

M = <h G Ll(Rn): lim I <p(ax)h(x)dx = 0> . 

M is a closed subspace of Ll(Rn) containing all dilates of g (i.e. the 
functions x-*g(bx), b>0) for each g&G. Also, °H«>(Rn)CM. Hence 
the theorem (i.e. M = Ll(Rn)) will be proved if °H°°(Rn) together with 
the dilates of functions in G span Ll(Rn). By a duality argument, based 
on weak* closure of i?°°(i?w), this is ensured by the nonexistence 
of anonnull solution^G£r°°(i?n) to (3.2). 
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The proof of Theorem 3 is along similar lines to that of Theorem 1, 
and shall not be given here. 

5. Concluding remarks. 
(a) I t is natural to ask whether in Theorem 1 Ka may be required 

merely to be a set of measure can, rather than a ball of this measure. 
To prove this by our method would require a corresponding strength­
ening of Lemma 4.1 whereby B is allowed to be any set of measure c 
lying in the unit ball. This we have only been able to carry out for 
n = 1 ; for n = 1 we can also prove an analogous extension of Theorem 3, 
in terms of a weaker definition of "well-rounded" based on density. 

(b) In the theorems of this paper, H™{Rn) can be replaced by 
S(A)> where A is a closed subset of (the dual) Rn, defined as the set of 
^>£Z,°°(i?n) whose (distributional) Fourier transform is supported in 
A> provided that 5 (A) has the quasi-analytic property. 

(c) We do not know in general how to decide whether or not a 
given G<ZLl(Rn) satisfies the hypothesis of Theorem 2. We wish also 
to call the readers' attention to the analogous problem, for which 
GCLl{Rn) is there no nonnull solution \f/ in Z,°°(7?n) of (3.2)? This 
problem, the analog for dilates of the famous Wiener problem for 
translates arises naturally in studying boundary behaviour of 
harmonic functions. The case n = 1 is reducible to the Wiener prob­
lem (cf. Gehring [l, pp. 107-110] for something similar), but the 
case n> 1 seems to us fundamentally different in nature. 
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ADDED IN PROOF OCTOBER 31, 1970. Lee Rubel has kindly called 
our attention to the paper "Relations between bounded analytic func­
tions and their boundary functions" by T. K. Boehme, M. Rosenfeld, 
and Max L. Weiss, J. London Math. Soc. (2) 1 (1969), 609-618, where 
Corollaries 3.6 and 3.7 were obtained by a different method. 


