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Our purpose is to present the following result (definitions will be 
found below). 

THEOREM. Let M be a connected n-dimensional Haar embedded 
manifold in C(K) whose restrictions, to any set ofn + l points [ki} C K , 
form a closed hypersurface of C({ki}). Then M is a Chebyshev set. 

The intention is to find sufficient conditions that a C1 manifold 
is a Chebyshev set. We have intentionally not assumed several 
prevalent hypotheses from other nonlinear approximation theories 
such as, assuming that K is a real interval, assuming a priori that M 
is boundedly compact (this, however, will be found to be a conse­
quence of our hypotheses) or explicitly assuming that 

card{& G K:f(k) = g(*), ƒ and gin M] g h. 

For example, such conditions arise in the unisolvent and locally 
unisolvent theories ([3], [ô], and [5], see [5, 8.3] for a brief compari­
son of the nonlinear results of L. Tornheim, T. Motzkin, J. Rice, G. 
Meinardus and D. Schwedt). The possibility and desirability of 
approximating from manifolds was suggested in [8], where the 
uniqueness of approximation from manifolds in a smooth space is 
also discussed. Our setting is antipodal in the sense that it is funda­
mental to our argument that approximations from a Chebyshev 
subspace of C(X) always satisfy a strong uniqueness condition [7]. 
The analogous statement in a smooth space is always false (Corollary 
2b below). Extensions of the necessity portion of Lemma 3 below 
have appeared in [2], [4], and [5, Theorem 89]. However it is the 
sufficiency of the characterization in Lemma 3 which is of primary 
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utility in our development. Our definition of a Haar embedded mani­
fold is a variation of a definition in [5, p. 142], and it follows for ex­
ample that Theorems 91 and 92 in [S] can be obtained from Lemma 3. 

We have outlined the proof by stating the major intermediate 
steps as lemmas, some of which are of independent interest. We have 
included a proof of the theorem from the lemmas. Although this is 
not the most difficult proof in the outline, it best illustrates the rela­
tion of the lemmas to the theorem. (Lemmas 1 and 5 are not explicitly 
referred to in the proof, but are used to prove Lemmas 3 and 6.) 
Complete proofs will appear elsewhere. 

DEFINITIONS. If K is a compact Hausdorff space, C(K) denotes 
the real-valued continuous functions on K. Let i f be a manifold 
embedded in a Banach space E. Let x be in E. Let 

d(xy M) = inf{||# — m\\lm in M}. 

A point m in M is termed a best approximation (local best approxima­
tion resp.) to x (if there is a neighborhood U of m resp.) such that 
||m—x||=d(x, ikf)(||m—#|l =d(xt MC\U) resp.). If for each x in E 
there is a unique best approximation to x from M then M is a 
Chebyshev set. An w-dimensional linear subspace of C(K) is a Haar 
space if zero is the only member vanishing on w-points. (It is classi­
cally known that a finite-dimensional subspace of C(K) is a 
Chebyshev set if and only if it is a Haar space.) We identify the tan­
gent space at a point min M with a subspace T(m) in E. If E = C(K) 
and M is an w-dimensional C^-submanifold we say that M is Haar 
embedded if T(M) is an ^-dimensional Haar space for each m in M. 
Finally if m is in M and x is in E we say that m satisfies a (local resp.) 
strong uniqueness condition for x if there is an r > 0 such that for all z 
in M (for all z in some neighborhood of m% resp.) 

II*-HI sII»-HI +fll«-HI-
,1. LEMMA. Let 0 be a best approximation from a linear space M to a 

point y of norm one. The following are equivalent. 
(i) There is an r>0 such that for all p in M 

sup{£>:||£|| = 1 = Ly\ è r||#||. 

(ii) 0 satisfies a strong uniqueness condition. 
(iii) 0 satisfies a local strong uniqueness condition. 

2. COROLLARY, (a) Approximations from a finite-dimensional 
Chebyshev subspace of an Li-space, or of a Ca(K)-space, always satisfy 
a strong uniqueness condition. 
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(b) Approximations from a subspace of a smooth Banach space never 
satisfy a strong uniqueness condition. 

In order to work with a single set of hypotheses, we will assume 
for the remainder of the results that M is a connected w-dimensional 
Haar embedded manifold in C(K). Let 0 be in M, and let f be in C(K). 

3. LEMMA. 0 is a local best approximation to f from M if and only if 
0 is a best approximation to f from T(0). 

4. LEMMA. The following set valued mapping is lower semicontinuous 

P(f) = {m in Mlm is a local best approximation tof}. 

5. LEMMA. If 0 is a best approximation to f from M, and if m is in Mt 

then m is a best approximation to f+m from M. 

6. LEMMA. If card K< oo, and M is a closed hyper surface in C(K), 
then 0 is a best approximation (global) to f if and only if 0 is a best 
approximation to f from T(0). 

PROOF OF THE THEOREM. We first show that best approximations 
are unique. Suppose that zero is a local best approximation to ƒ. By 
a routine argument (using for example Lemma 3, the characteriza­
tion for approximations from Haar spaces, and Lemma 3 again) 
there exists a set of n + 1 points {#»•} such that zero is a local best 
approximation to ƒ on \xi}. By Lemma 6, zero is a global best ap­
proximation to ƒ on \Xi}. Hence zero is a global best approximation 
on K. Hence since every local best approximation is a global best 
approximation, Lemma 4 implies that the set valued metric projec­
tion 

A(x) = [m in Jf :||w — #|| = d(xi M)} 

is lower semicontinuous. This implies that A (x) does not contain a 
proper subset which is compact and open relative to A(x). (A proof 
can be constructed in the spirit of the proof for Theorem 14 in [l].) 
Since, by Lemma 3 and Corollary 2(a), each point in A (x) is isolated, 
we conclude that A (x) contains at most one point. 

I t remains to show that each point in C(K) has a best approxima­
tion from M. We need to know that no two points in M agree onw + 1 
points of K. Suppose that m is a function in M which agrees with 
zero on n + 1 points. Let L be a norm one annihilator of T(0) which 
is supported on the n + 1 zeros of m. Choose ƒ to be a continuous func­
tion such that 11/11 = L ( / ) = 1 . Thus by Lemma 6 and the characteri­
zations for linear approximations, zero is a best approximation to ƒ. 
Again using L, one shows that zero is a best approximation to h 
= (2||w|| — | m | ) / . Some computation shows that m is also a best 
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approximation. This contradicts the first part of the proof. 
We have tha t if P is the restriction of functions in M to any fixed 

set of w + 1 points then P is a regular differential mapping (since the 
tangent spaces are Haar spaces), and P is one-to-one (by the last 
paragraph). An inverse function theorem argument implies that M 
is homeomorphic to P(M). I t is now clear that M is boundedly com­
pact, and thus M i s a Chebyshev set. The proof is completed. 

In the above proof we established several properties of Haar 
embedded manifolds. We record these properties in the next corollary. 

7. COROLLARY. If M satisfies the conditions of the theorem, then M 
is a boundedly compact manifold which is diffeomorphic to n-space. 
Furthermore a point in M which is a local best approximation to a f une-
tionfis, in fact, the unique global best approximation lof. 

8. EXAMPLE. Let 

M = {(r cos /, r sin /, / + r sin(/ + 7r/4)):/ real and r > y/l]. 

Then M is a 2-dimensional Haar embedded manifold in i?3. However 
there exist points which have nonunique best approximations from 
M. Hence we cannot simply drop the closure assumption in the 
theorem and still prove uniqueness for approximations. The com­
putations necessary for the example are facilitated by an appropriate 
use of Lemma 3. 
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