
FULLY NUCLEAR OPERATORS 

BY C. P. STEGALL AND J. R. RETHERFORD1 

Communicated by M. H. Protter, March 11, 1970 

1. Introduction. This note is an outgrowth of a study of the fol­
lowing conjecture of Grothendieck [5, Chapter II , p. 47]. 

(C) Let E and F be Banach spaces such that every J P £ < £ ( E , F), 
the continuous linear operators from E to F, is nuclear. Then either 
E or F is finite dimensional. 

Recall that an operator T:E—*F is nuclear if there exists (fi)Q.Er, 
ipCi) C F such that 

00 00 

Tx = ^fi(x)Xi for every x £ E and ]T) Il/»ll IMI < + °°« 
* - i »=i 

Every nuclear operator obviously has the property that the image 
of an unconditionally convergent series is absolutely convergent. An 
operator with this latter property is called an absolutely summing 
operator [14] (Grothendieck called these operators "semi-intégrale à 
droit"). I t can happen in non trivial cases, e.g. £(h,k)t that all con­
tinuous linear operators are absolutely summing [5], [9]. Thus, one 
approach to (C) is to seek a criterion guaranteeing the existence of 
nonabsolutely summing operators between Banach spaces. Such a 
criterion is developed in [22]. 

To our knowledge (C) has been considered only in [2] and the 
important recent paper of Lindenstrauss and Peiczynski [9]. Al­
though we are unable to solve (C) in the generality asserted by 
Grothendieck, we are able to give an affirmative answer to (C) under 
a somewhat more restricted hypothesis. However, we should mention 
that if (C) is true as asserted by Grothendieck then our hypotheses 
must be satisfied. 

We need two results from [22]. 

THEOREM A. Let E and F be infinite dimensional Banach spaces. 
Then there is an infinite dimensional subspace E 0 of E and an operator 
T:Eo—>F such that T is not absolutely summing. 
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THEOREM B. Let E and F be infinite dimensional Banach spaces. 
Then there is an infinite dimensional subspace F0 of F and an operator 
T:E—>F0 such that Tf is not absolutely summing. 

Proofs of these theorems and related results will appear elsewhere. 

2. Fully nuclear operators. Many of the difficulties in the theory 
of nuclear operators arise because the representation of a nuclear 
operator T from a space E to a space F depends on the range F and 
not the image T(E). To avoid these difficulties we make the following 
definition. 

DEFINITION 1. A bounded operator T:E—*F, E and F Banach 
spaces, is fully nuclear if the astriction Ta:E—>T(E) is nuclear. We 
will denote by N(E, F) and FN(E, F) the nuclear and fully nuclear 
operators from E to F respectively. 

Grothendieck [2, p. 40 ] has given a general method for obtaining 
nuclear mappings which are not fully nuclear. We will see below that, 
in a certain sense, each nuclear operator can be obtained from a fully 
nuclear operator. 

Before proceeding to the results we should mention that it is im­
material whether we consider the astriction to the image or the closure 
of the image in Definition 1. 

We now state our main result: 

THEOREM 1. Let E and F be Banach spaces and suppose <£(£, F) 
= FN(E, F). Then E or F is finite dimensional. 

The converse is also true. 
The proof of Theorem 1 is immediate from Theorem B. Of course, 

Theorem 1 is the fully nuclear analog of (C). 
Using the results of [22] we can prove 

THEOREM 2. If E and F are infinite dimensional Banach space with 
F isomorphic to a conjugate space then there is a quotient space G o f F 
and an operator TlE-^G such that T is not nuclear. 

3. The linear and "ideal" structure of FN(E, F). It is well known 
[7], [13] that N(E, F) is a linear space and that if S£«£(JE, F), 
T<EN(F, G), i?<G<£(G, H) then 

ToSEN(E,G) and RoTEN(F,H) 

for all Banach spaces £ , F, G, and H. 
Unfortunately FN(E, F) is not so well behaved. 

THEOREM 3. Let TEN(E, F) and suppose KerT=T~1(0) has infinite 
dimension. Then T has a representation T=Ti—T2 where Tu 
T2eFN(E, F). 
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From Theorem 3 and the construction of Grothendieck [2, p. 40] 
it follows that FN(E, F) is not, in general, a linear space. There are 
important cases where FN(E, F) is a linear space. 

The ideal structure of FN(E, F) is also pathological. I t is clear that 
ST is fully nuclear whenever T is fully nuclear. If R:E—*F is such 
that the closure of R(E) is F and T<EFN(F, G) than TR is fully 
nuclear. However, in general, TR need not be fully nuclear whenever 
T is. This fact is a consequence of 

THEOREM 4. Every nuclear operator is the restriction of a fully nuclear 
operator. 

Theorem 4 and our next result together show that every nuclear 
operator is "between" two fully nuclear operators. 

THEOREM 5. Let T:E—*F be nuclear and suppose that the dimension 
of T(E) is infinite. Then there exists an infinite dimensional subspace 
EQ of E such that the restriction of T to E o is fully nuclear, 

4. A characterization of Hilbert spaces. In this section we give 
an operator characterization of Hilbert spaces. 

THEOREM 6. Let TG.N(E, F) and suppose T(E) is complemented in 
F, Then T<EFN(E, F), 

As an easy corollary we obtain 

THEOREM 7. If F is isomorphic to a Hilbert space (in particular if F 
is finite dimensional) then for any Banach space E, N(E, F) = FN(E, F), 

Since the mappings of finite rank are dense in N(E, F) with the 
nuclear norm [13], we obtain 

THEOREM 8. For all Banach space E, F, FN(E, F) is dense in 
N(E, F) (with the nuclear norm). 

As a partial converse to Theorem 6 we have 

THEOREM 9. Let F be a reflexive space such that 
(i) each subspace of F has the approximation property 

and 
(ii) N(E, F) = FN(E, F) for each Banach space E. Then every closed 

subspace of F is complemented. 

THEOREM 10. Suppose F is a Banach space satisfying the conditions 
of Theorem 9. Suppose, moreover, that the canonical map from FN(E, F) 
into N(E, F) is an isometry for each Banach space E, Then F is iso-
metrically isomorphic to a Hilbert space. Moreover, any Hilbert space F 
satisfies all the above conditions. 
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We should mention that (i) of Theorem 9 is probably superfluous. 
Indeed, Grothendieck [2, §5, no. 2] has conjectured that every reflex­
ive Banach space has the approximation property. Also, Theorem 9 
probably characterizes the isomorphs of Hubert space. I t is an un­
solved problem as to whether the conclusion of Theorem 9 charac­
terizes the isomorphs of Hubert space. 

5. An analog of a problem of Grothendieck. It is very easy to 
prove that if T&N(E, F) then T'EN(F\ E') [2], [13]. The converse 
problem is still unsolved and apparently difficult. (See [2] to see how 
this problem relates to the approximation problem.) The analogous 
problem for fully nuclear operators is solved in the following theorem. 

THEOREM 11. There is a nonfully nuclear operator T whose adjoint Tf 

is fully nuclear. 

6. Completely nuclear operators. We give the definition dual to 
Definition 1. 

DEFINITION 2. A bounded operator T\E—>F is completely nuclear 
if TK, defined by 

T 
E > F 

£/Ker T 

where q is the quotient map, is nuclear. 
The standard theorems between operators and their adjoints show 

the relationship between fully nuclear and completely nuclear opera­
tors. There are results dual to those of Theorems 1-11 for completely 
nuclear operators. We will not go into details here. We will mention 
only the following results (see [2l]). 

THEOREM 12. A Banach space E is an g^-space2 if and only if 
N(E, F) = FN(E, F) for every Banach space F. 

Let CN(E, F) denote the completely nuclear operators from E to F. 

THEOREM 13. A Banach space E is an £i-space2 if and only if 
N(F, E) = CN(F, E) for all Banach spaces F. 

Let AS(E> F) denote the absolutely summing operators from E to 
F. From Theorem 12 and [9] we obtain 

THEOREM 14. Let E have an unconditional Schauder basis. Then 
i The spaces of Theorems 12 and 13 are those of [9], [10 ] . 
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A S(E, F) = N(E, F) for all Banach spaces F if and only if E is iso­
morphic to Co. 
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