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1. Preliminary definitions and notations. Grothendieck [3] and
Pietsch [6] present an exhaustive study of nuclear operators and
nuclear maps. The notion of a nuclear operator was extended by
Persson and Pietsch in a recent paper [5] and they study in detail the
p-nuclear and quasi-p-nuclear maps. In this paper we define and
study certain linear maps called A-nuclear and quasi-A-nuclear maps.
Our definition and generalisation here are motivated by the Kothe
sequence spaces and their duality theory. For the special case A=[*
we obtain the nuclear operators and for A = we obtain the p-nuclear
maps; also, the special case A =c, yields the «-nuclear operators of
Persson and Pietsch. Most of the results in this work are motivated
by the work of Persson and Pietsch [5] and K&the sequence spaces.

We shall briefly outline our assumptions. For definitions not stated
here see Garling [1], Kéthe [4], Ruckle [7], Sargent [9] and Zeller
[10]. Let X be a symmetric sequence space of scalars and A\* be its
Koéthe dual. We shall assume that A is provided with the Mackey
topology of the duality (A, N*) and that this topology is provided by
a norm p, p itself being an extended seminorm on w. We assume now
that A is solid and that it is K-symmetric, i.e., for each x &N and for
each permutation 7 of I+ we have x,EN and p(x) =p(x,). N is also
assumed to be a BK space with AK. We remark that our assumptions
imply that A=w or A =I® or ACc,. The space AM* is now considered as
the topological dual of N and equipped with its natural norm topology.

We pause now to point out that in addition to the spaces I?, 1<p
< =, the sequence spaces #(¢) of Sargent [8] and the sequence spaces
Ma,p and v, , of Garling [2] serve as examples of the type of sequence
spaces A we consider. Garling shows also that his spaces ua,, are in
general not linearly homeomorphic to /7.

Next let E and F be normed linear spaces. Then A(E) is the (vector
sequence) space of all vectors x = (x,.), x,E E for each # and such that
the sequence ((x,, a)) €N for each a € E’. Formally define

ek(x) = sup p(l <xm a)l ),
Ilall=1

where p is the norm on A.
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M E] is the space of sequences x = (x.), x, & E for each n and such
that (||x.]|) EN; the space A[E] is equipped with a natural norm
topology given by |l«f|« = p [(|«.])) ]

2. M-nuclear maps. Let T be a linear map on the normed space E

into another, F. We define T to be a A-nuclear map if T admits the
representation

1) Tx = Z (%, @n)Yn, x € E,

ne=]l
where a=(a,)EN[E’'] and y=(y,) EN*(F) with es(y) < ©. There
may be other representations of T in the above form. Keeping this in
mind, we define

6) N\(T) = in{]lds- a0}

where the infimum is taken over all possible representations of T in
the above form.

We observe that A-nuclear maps can be defined in the following
equivalent way: say T is A-nuclear if T has the representation

L

(3) Tx = E a,.(x, un)}'m

n=1

where ”un” _S_l for each n, o= (an) ex and y= (y") E)\*(F) with
e+() 1. In this case

4 N\(T) = inf p(a).
Let M\(E, F) denote the set of all \-nuclear maps on E into F.
TrEOREM 1. Each N-nuclear map T is continuous and || T|| £ Nr(T).

THEOREM 2. N\(E, F) is a guasi-normed linear space under the norm
Ny; also if Fis a Banach space N\(E, F) is complete if \ is made of all
sequences uSw for which p(u) < .

TueorReEM 3. If A(E, F) denotes the space of all operators T on E
which have finite dimensional ranges in F, then A(E, F) is a dense
subspace of N\(E, F).

CoRrROLLARY. If F is a Banach space then each TENL(E, F) is a
compact linear map and each such T has a separable range space.

The next two theorems play an important role in the factorization
theorem (Theorem 6) characterizing N-nuclear maps.
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THEOREM 4. Let E, F and G be normed linear spaces. Then we have
the following:

(@) If TENLN(E, F) and SEL(F, G) then So TEN\(E, G) and
Nx(S o T) <|| S| - Nu(D).

(b) If TEL(E, F) and SEN\(F, G) then So TEN\(E, G) and
N(S o T) =N (S)-|| T]].

THEOREM 5. Let §=(06,) be a fixed member of N. Then the map
D:l*—N\ defined by D(u) = (4:6:) is a N-nuclear map and N\(D) =p(9).

THEOREM 6. Suppose F is a Banach space. Then the map TEL(E, F)
s N-nuclear if and only if it can be factorized as follows:

P D Q
T=QoDoP, E—J*—>\—>F

where P and Q are continuous linear maps with ||P|| <1 and ||Q|| =1
and D is as defined in Theorem 5.

3. Quasi-A-nuclear maps. A linear map T on E into F is defined
to be quasi-N-nuclear if there exists a sequence a = (a,) of elements of
E’ such that a ©\[E’] and || Tx|| £ [(](x, ax)|)] for each xEE. Set
O\(T) =inf||a|| ., where the infimum is taken over all admissible a.
Then one can prove that Q\(E, F)CL(E, F) with H TH SO\(T). Also
N\(E, F)CQO\(E, F) with Q\(T) S N\(T) for TEN\(E, F). In the
opposite direction we have the following result.

THEOREM 7. If the Banach space F has the extension property and if
TEQ\(E, F) then TEN\(E, F) and Q\(T) = N\(T).

We remark also that the above result is true for any pair E, F
provided the sequence space A is complemented. Thus for A =72 when
one gets the quasi-2-nuclear maps and the 2-nuclear maps, we have
the (known) result that No(E, F) = Q.(E, F).

4. M-nuclear maps and absolutely A-summing maps. The linear
map T on E into F is said to be absolutely A-summing if for each
x=(x.) EN(E), the sequence Tx=(Tx,)EN[F]. Let now X\
= {xEwip(x) < = }.

THEOREM 8. The linear map T on E into F is absolutely N-summing
if and only if there exists a p >0 such that for each finite system of vectors
X1, X2, * * * , % 90 E the following inequality holds:

”(Txl, Txzy « - -y T2, 0,0, - - - )”"’ Seal®,®, -, % 0,0, -).

The smallest such p is denoted 7\ (7). It can be shown that when
F is a Banach space the space m\(E, F) of all the absolutely A-sum-
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ming maps on E into F is a Banach space with the norm defined by

7l')‘(').

The space \ is said to have the norm iteration property if for each
sequence (x") of elements of N we have p[p(x*)]=p[p(x:)] where
xi=(x}, x5, - -+, x%, + - ). Itis easily verified that the spaces ¢, and
I» (1 £p = =) have the above property.

THEOREM 9. If N has the norm iteration property then NL(E, F)
CT)‘(E, F) and 7l')\(T) _S__N)\(T)

We remark now that Theorem 9 above is true also for quasi-\-
nuclear maps with practically the same proof as that of Theorem 9.
In case A\=17 (p=1) the results of Persson and Pietsch [5] show that
by taking the composition product of a certain finite number of
p-quasi-nuclear maps one can obtain ultimately a nuclear map. In a
rather general set up as ours we cannot prove a result of that type.
Consequently when one attempts to formulate the concept of a
A-nuclear space using the standard canonical mappings, one obtains
naturally two related concepts, those of A-nuclear spaces and of
quasi-A-nuclear spaces.

REFERENCES

1. D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. (3)
16 (1966), 85-106. MR 33 #5317.

2. , A class of reflexive symmetric BK-spaces, Canad. J. Math. 21 (1969),
602-608.

3. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem.
Amer. Math. Soc. No. 16 (1955). MR 17, 763.

4. G. Kothe, Topologische lineare Riume. I, Die Grundlehren der math. Wis-
senschaften, Band 107, Springer-Verlag, Berlin and New York, 1960. MR 24 #A411.

5. A.Perssonand A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachriu-
men, Studia Math. 33 (1969), 19-62.

6. A. Pietsch, Nukleare lokalkonvexe Riume, Akademie Verlag, Berlin, 1965.
MR 31 #6114.

7. W. Ruckle, Symmetric coordinate spaces and symmetric bases, Canad J. Math.
19 (1967), 828-838. MR 38 #4977.

8. W. L. C. Sargent, Some sequence spaces related to the I? spaces, J. London Math.
Soc. 35 (1960), 161-171.

9, , On sectionally bounded BK-spaces, Math. Z. 83 (1964), 57-66. MR 28
#2403.

10. K. Zeller, Theorie der Limitierungsverfahren, Ergebnisse der Mathematik und
ihrer Grenzgebiete, Heft 15, Springer-Verlag, Berlin and New York, 1958. MR 22
#9759.

UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104

GOETHE UNIVERSITAT, FRANKFURT AM MAIN



