ON BIEBERBACH EILENBERG FUNCTIONS

BY DOV AHARONOV

Communicated by Wolfgang H. Fuchs, July 18, 1969
I. Introduction. In this paper we bring the following two results:

Suppose that $F(z)=b_{1} z+b_{2} z^{2}+, \cdots$ is a B.E. function (i.e. $F(z)$ is regular in the unit circle, $F(z) F(\zeta) \neq 1$ for any $|z|,|\zeta|<1$ and $F(0)=0)$. Then we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|b_{k}\right|^{2} \leqq 1 \tag{1}
\end{equation*}
$$

This result contains, of course, the result

$$
\begin{equation*}
\left|b_{n}\right| \leqq 1, \quad n=1,2, \cdots \tag{2}
\end{equation*}
$$

which was conjectured by Rogosinsky [8] and was solved about ten years later by Lebedev and Milin [5].

The second result deals with univalent B.E. function $F(z)$ $=b_{1} z+b_{2} z^{2}+\cdots$. For such function we have the following

$$
\begin{equation*}
\left|b_{n}\right| \leqq e^{-c / 2}(n-1)^{-1 / 2}, \quad n=2,3, \cdots, \tag{3}
\end{equation*}
$$

where c is Euler constant.
This result is sharp in order of magnitude and the constant cannot be improved to be better than $e^{-1 / 2}$.
II. The results of Lebedev and Milin. Lebedev and Milin found [6], [7] some important results concerning coefficients of exponential functions which we quote here.

Lemma 1. Let $A_{1}, A_{2}, A_{3}, \cdots$ be an infinite sequence of arbitrary complex numbers such that $\sum_{k=1}^{\infty} k\left|A_{k}\right|^{2}<\infty$. Then for $\exp \sum_{k=1}^{\infty} A_{k} z^{k}$ $=\sum_{k=0}^{\infty} D_{k} z^{k}$ we have

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|D_{k}\right|^{2} \leqq \exp \sum_{k=1}^{\infty} k\left|A_{k}\right|^{2} \tag{4}
\end{equation*}
$$

with equality only in the case $A_{k}=\rho^{k} \eta^{k} / k, k=1,2, \cdots$ where $0 \leqq \rho<1$ $|\eta|=1$.

AMS Subject Classifications. Primary 3043, 3009; Secondary 3042, 3065.
Key Words and Phrases. Regular functions, Bieberbach-Eilenberg functions, Milin-Lebedev Lemmas, Schiffer-Garabedian inequalities, pairs of regular functions, Grunsky inequalities.

Lemma 2. Let $\left\{A_{k}\right\}$ and $\left\{D_{k}\right\}$ be defined as in Lemma 1 (without the limitation $\left.\sum_{k=1}^{\infty} k\left|A_{k}\right|^{2}<\infty\right)$. Then

$$
\begin{equation*}
\left|D_{n}\right|^{2} \leqq \exp \left(\sum_{k=1}^{n} k\left|A_{k}\right|^{2}-\sum_{k=1}^{n} 1 / k\right), \quad n=1,2, \cdots \tag{5}
\end{equation*}
$$

with equality only in the case $A_{k}=\eta^{k} / k$ for $k=1,2, \cdots, n$ and $|\eta|=1$.
III. Schiffer-Garabedian inequalities. We quote here a theorem of Garabedian and Schiffer [1]:

Lemma 3. Suppose that $F(z)$ is a univalent B.E. function. Then we have for

$$
\begin{align*}
& \log \frac{F(z)-F(\zeta)}{(z-\zeta)[1-F(z) F(\zeta)]}=\sum_{n, m=0}^{\infty} \gamma_{n m} z^{n} \zeta^{m} \tag{6}\\
& \operatorname{Re}\left\{\sum_{n, m=0}^{N} \lambda_{n} \lambda_{m} \gamma_{n m}\right\} \leqq \sum_{n=1}^{N} \frac{\left|\lambda_{n}\right|^{2}}{n} \tag{7}
\end{align*}
$$

where $\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}$ is a finite sequence of complex constants with λ_{0} real.

This remarkable result was proved first in [1] by variational methods. Later the result was proved in [3] by area methods. We note that in [1] the result was formulated in a different manner.
IV. Coefficients of B.E. functions. From Lemma 3 we deduce immediately the following:

$$
\begin{equation*}
\sum_{k=1}^{\infty} k\left|\gamma_{k 0}\right|^{2} \leqq \log \frac{1}{\left|F^{\prime}(0)\right|^{2}} \tag{8}
\end{equation*}
$$

(Indeed from Lemma 3 we have

$$
\lambda_{0}^{2} \operatorname{Re}\left\{\log F^{\prime}(0)\right\}+2 \lambda_{0} \operatorname{Re}\left\{\sum_{n=1}^{N} \lambda_{n} \gamma_{n 0}\right\} \leqq 2 \sum_{n=1}^{N} \frac{\left|\lambda_{n}\right|^{2}}{n}
$$

By substitution $\lambda_{0}=2, \lambda_{n}=n \bar{\gamma}_{n 0}$ we get (8).)
We are now in a position to prove
Theorem 1. Let $F(z)=b_{1} z+b_{2} z^{2}+\cdots$ be a B.E. function; then (1) follows.

Proof. By substituting $\zeta=0$ in (6) we have
(9) $\log \frac{F(z)}{z}=\sum_{n=0}^{\infty} \gamma_{n 0} z^{n}, \frac{F(z)}{z F^{\prime}(0)}=\exp \left(\sum_{k=1}^{\infty} \gamma_{0 k} z^{k}\right)=\sum_{k=1}^{\infty} \frac{b_{k}}{F^{\prime}(0)} z^{k-1}$.

By Lemma 1 and (8) we get

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\left|b_{k}\right|^{2}}{\left|F^{\prime}(0)\right|^{2}} \leqq \exp \left(\sum_{k=1}^{\infty} k\left|\gamma_{0 k}\right|^{2}\right) \leqq \frac{1}{\left|F^{\prime}(0)\right|^{2}} \tag{10}
\end{equation*}
$$

So our theorem follows for univalent B.E. function. The result is generalized to the general class by the principle of subordination [2, pp. 424-425], [9].

Remark 1. The result is sharp for the B.E. function $F(z)=z^{n}, n$ $=1,2, \cdots$ and also for Jenkin's functions [4]

$$
\begin{equation*}
F(z)=\frac{\left(1-r^{2}\right)^{1 / 2} z}{1+i r z}, \quad 0 \leqq r<1 \tag{11}
\end{equation*}
$$

Remark 2. Jenkin's result [4]

$$
\begin{equation*}
F(z) \leqq|z| /\left(1-|z|^{2}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

follows easily from Theorem 1.
Theorem 2. Let $F(z)=b_{1} z+b_{2} z^{2}+\cdots$ be a univalent B.E. function. Then we have

$$
\begin{equation*}
\left|b_{n}\right|<e^{-c / 2}(n-1)^{-1 / 2}, \quad n=2,3, \cdots \tag{13}
\end{equation*}
$$

where c is Euler constant.
Proof. By Lemma 2 and (8), (9) we have

$$
\begin{array}{r}
\frac{\left|b_{n}\right|^{2}}{\left|F^{\prime}(0)\right|^{2}} \leqq \exp \left(\sum_{k=1}^{n-1} k\left|\gamma_{0 k}\right|^{2}-\sum_{k=1}^{n-1} 1 / k\right) \leqq \frac{\exp \left(-\sum_{k=1}^{n-1} 1 / k\right)}{\left|F^{\prime}(0)\right|^{2}} \tag{14}\\
n=2,3, \cdots
\end{array}
$$

So $\left|b_{n}\right|^{2}<e^{-c}(n-1)^{-1}$ which is another form of our theorem. For Jenkin's functions (11) we have $\left|b_{n}\right|^{2}=\left(1-r^{2}\right) r^{2(n-1)}$. If $1-r^{2}$ $=1 /(n-1)$ we have

$$
\left|b_{n}\right|^{2}=\frac{1}{n-1}\left(1-\frac{1}{n-1}\right)^{n-1} \sim \frac{1}{e(n-1)}
$$

So the order of magnitude is the best possible and the argument for the constant also follows.

References

1. P. R. Garabedian and M. Schiffer, The local maximum theorem for the coefficients of univalent functions, Arch. Rational Mech. Anal. 26 (1967), 1-32. MR 37 \#1584.
2. E. Hille, Analytic function theory. Vol. II: Introduction to Higher Mathematics, Ginn, Boston, Mass., 1962. MR 34 \#1490.
3. J. A. Hammel and M. Schiffer, Coefficient inequalities for Bieberbach-Eilenberg functions, Arch. Rational Mech. Anal. 32 (1969), 87-99.
4. J. A. Jenkins, On Bieberbach-Eilenberg functions, Trans. Amer. Math. Soc. 76 (1954), 389-396. MR 16, 24.
5. N. A. Lebedev and I. M. Milin, On the coefficients of certain classes of analytic functions, Mat. Sb. 28 (70) (1951), 359-400. (Russian) MR 13, 640.
6. ——_ An inequality, Vestnik Leningrad. Univ. 20 (1965), no. 19, 157-158. (Russian) MR 32 \#4248.
7. I. M. Milin, The coefficients of schlicht functions, Dokl. Akad. Nauk SSSR 176 (1967), 1015-1018 = Soviet Math. Dokl. 8 (1967), 1255-1258. MR 36 \#5328.
8. W. W. Rogosinsky, On a theorem of Bieberbach-Eilenberg, J. London Math. Soc. 14 (1939), 4-11.
9. On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82. MR 5, 36.

Technion Israel Institute of Technology, Haifa, Israel

