
RECENT RESULTS IN THE FIXED POINT THEORY 
OF CONTINUOUS MAPS 

BY EDWARD FADELL1 

1. Introduction. Given a function/: X-+X, any question which 
inquires into the existence, nature and number of points xÇzX such 
that ƒ(#)=# is called fixed point theory. The assumptions on ƒ and 
X range from practically none (e.g., X is a set, ƒ a function) to quite 
stringent assumptions on ƒ and -X" (e.g., X is a Riemannian manifold 
and ƒ is an isometry). Our attention will be focused on results which 
require X to be a fairly reasonable space (e.g., a finite polyhedron) 
and ƒ a map ( = continuous function). Furthermore, we will limit our 
discussion to results which are not included in the expository tract 
[49] by Van der Walt (1967), which adequately covers the history 
of the subject from its beginning around 1910 to the early sixties. 

2. The Lefschetz theorem and local index theory. One of the most 
useful tools in fixed point theory is the Lefschetz Fixed Point Theo­
rem [34], [35], [25]. In its most elementary form it is simply this. 
Let X denote a finite polyhedron and ƒ : X—*X a map. Then, using the 
field of rationals Q as coefficients, ƒ induces homomorphisms. 

(1) fa:Hk(X;Q)->Hk(X;Q). 

The number (it turns out to be an integer) 

(2) L(f) = E (-1)* Trace/*, 
k 

is called the Lefschetz number of ƒ. Then a sufficient condition for ƒ 
to have at least one fixed point is that L(f)-^0. In short, 

(3) L(f) T* 0 =»ƒ(*) = x for some x G X. 
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The converse statement for (3) is manifestly false. All one needs to 
look at is a polyhedron X of Euler characteristic 0 and let ƒ denote 
the identity map. However, if we alter (3) slightly, making use of the 
fact that L(f) depends only upon the homotopy class of/, the con­
verse statement becomes more interesting (as we shall see). For this 
reason we formulate the Lefschetz Fixed Point Theorem as follows: 

2.1. THEOREM. Let f IX-^X denote a self-map of a finite polyhedron 
X. If L(f) 5^0, then every map homotopic to f has a fixed point. 

Another useful tool is the local form of 2.1, commonly referred to 
as local index theory (L(f) may be thought of as a "global index"). 
I t has a long history dating back to Hopf [26], and developed further 
by Leray [38], Felix Browder [ó], [7], O'Neill [44], Bourgin [3] 
and Deleanu [13]. Axiomatically, the theory (following [ó]) goes as 
follows. 

2.2. DEFINITION. Let 6 denote a category of spaces and maps and 
let A(<2,) denote the set of pairs (ƒ, U), where f:X—>X is a map in 6 
and U is an open subset of X such that ƒ has no fixed points on the 
boundary of V. Then a local index theory on G is a function i:A((5) 
—>Q subject to the following conditions: 

Al (LOCALIZATION). If (ƒ, U) and (g, U) belong to A(e) and 
/ = g o n Z 7 , then i(fy ü)=i(g, U). 

A2 (HOMOTOPY). If ft is a homotopy such that (ƒ*, U)E.A(e) for 
each /, O ^ J g l , then i(f0, U)=i(fh U). 

A3 (ADDITIVE). If (ƒ, 17) £-4(6) and Ucontains mutually disjoint 
open subsets Fy, j = l , • • • , k, such that ƒ has no fixed points in 
tf-UÎ-i y h then 

i(f,V) = ÈtttPy). 

In particular, if ƒ has no fixed points in U, i ( / , U) = 0 . 
A4 (NORMALIZATION). If f:X—>X belongs to 6, then 

t( / , X) = £(ƒ). 

AS (COMMUTATIVE). If the maps/:X—>F, g: Y-+X belong to e and 
(gf, U ) £ 4 ( e ) , then 

i(gf, Ü) - *(fo r l(£0). 
Note that A4 requires that L(f) be defined for maps f:X-+X in the 

category 6. Thus, underlying the axiomatic approach is a homology 
theory (with rational coefficients) H such that H(X) is finitely gene­
rated for each Z G C . In practice, Cech homology or singular homol-
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ogy theory are employed. Also, the existence of a local index theory 
on 6 implies the validity of the Lefschetz Theorem 2.1 for a map 
flX-+X in (6). 

The existence and uniqueness of a local index in the categories of 
finite polyhedra and ANR's (compact metric) is accomplished in 
various ways in [3], [6], [13], [38], [44]. Actually, once the existence 
and uniqueness of a local index for the category of finite polyhedra 
and maps is established it is a simple matter to extend the result to 
the category of ANR's using the fact that for any €>0, an ANR is 
e-dominated by a finite polyhedron. A more recent development of 
index theory for finite dimensional ANR's is given in [14]. An excel­
lent general reference is a forthcoming book by R. F. Brown [9]. 
In the case of ANR's , i takes on only integer values. 

The question as to the range of validity of Theorem 2.1 is a nat­
ural one and, as already indicated, Theorem 2.1 remains valid for self-
maps of ANR's (Lefschetz [36]). Lefschetz also proved 2.1 for a class 
of spaces called quasi-complexes [32]. While there are certainly quasi-
complexes which are not ANR's [15], there remains the question 
whether every ANR is a quasi-complex. Of course, this question 
could be bypassed by showing that Theorem 2.1 is indeed valid for 
a class of spaces which contains both the class of compact ANR's and 
the Lefschetz quasi-complexes. More about this in a moment. 

Simultaneously, there is also the question of finding a category 6 
which properly contains the ANR's and also admits a local index 
theory. By altering Lefschetz's definition of a quasi-complex in sig­
nificant ways, F . Browder [ó] arrived at the concept of a semicomplex, 
or, more precisely, the concept of a semicomplex structure on a com­
pact space X. Associated with this concept is the notion of when a 
map f:X—>Y is a semicomplex map, where X and Y have specified 
semicomplex structures. If we call a category 6 of compact spaces 
and mappings admissible if each Z G 6 has a specified semicomplex 
structure such that all the maps in G become semicomplex maps, 
Browder showed in [ó] that every admissible category 6 admits a 
local index theory. In addition, the Lefschetz Theorem 2.1 is valid 
for any space admitting a semicomplex structure. Since the category 
of compact metric HLC* spaces [32] and all maps is an admissible 
category and also contains the category of ANR's, this provided a 
satisfactory solution to the question which opened this paragraph 
[32]. However, there were still some loose ends. For example, the 
existence of a semicomplex structure on X implies that X is locally 
connected. This allows the existence of quasi-complexes which are not 
semicomplexes. On the other hand, the problem of whether a semi-
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complex is a quasi-complex brings us back to the question of whether 
an ANR is a quasi-complex. This left the relationship between quasi-
complexes and semicomplexes rather cloudy. This problem, and 
others, was taken up by R. B. Thompson [46], and he succeeded in 
clarifying the situation. After modifying slightly Browder's definition 
of semicomplex (without jeopardizing Browder's results) he dis­
covered the notion of what he called a weak semicomplex structure on 
a compact space (briefly, a weak semicomplex). As the terminology 
suggests, the concept drops some of the assumptions in the definition 
of a semicomplex. He then verified that the concept was strong 
enough to admit the validity of the Lefschetz Theorem (2.1). In 
addition, he proved that every quasi-complex was, in fact, a weak 
semicomplex and he gave necessary and sufficient conditions for a 
weak semicomplex to be a quasi-complex. Thus, he obtained a class 
of spaces wherein the Lefschetz Fixed Point Theorem was valid and 
at the same time contained both the quasi-complexes of Lefschetz 
and the semicomplexes of Browder. In summary, the category of 
weak semicomplexes of Thompson is appropriate for the global index, 
while Browder's semicomplexes appear to be the right setting for the 
local theory. 

We might also mention that Thompson [46], [48] has shown that 
the category of weak semicomplexes is closed under products, suspen­
sions, and retractions. Corresponding results also hold for semi-
complexes. 

3. Nielsen classes and results of the Wecken type. When X is a 
reasonable space, say an ANR (compact metric), the set <£(ƒ) of fixed 
points of ƒ : X—*X admits an equivalence relation which partitions 
<£(ƒ) into a finite number of subsets called the Nielsen classes of ƒ 
[43], [50]. The relation is as follows. If x0 and X\ belong to *(ƒ), set 

XQ^XI if there is a path 7 from x0 to X\ such that 7 is homotopic (with 
ends fixed) to ƒ (7). Notice that if ƒ is the identity map or if X is simply 
connected there is only one Nielsen class (assuming ^(f)^0). 

If J7 is a Nielsen class of/, we use local index theory to define the 
index of F as follows. Let U denote an open subset of ƒ such that 
^ C U and V is disjoint from all the remaining Nielsen classes. Then 
the index i(F) of F is defined by i(F)=*i(f, U). If i(F) ?*0, F is called 
an essential Nielsen class; otherwise it is inessential. The number N(f) 
of essential Nielsen classes is called the Nielsen number of/. I t turns 
out that N(f) depends only on the homotopy class of ƒ. More pre­
cisely, a homotopy connecting ƒ and g: X—+X generates a bijection 
from the essential Nielsen classes of ƒ to the essential Nielsen classes 
of ƒ with corresponding classes having the same index. Notice that 
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N(f) is a lower bound for the number of fixed points of any map 
homotopic t o / . 

I t is worthwhile noting here that N(f)=0 always implies L(f) = 0 
because of the properties of the local index theory. In particular, if 
Fit • • • , Ft are the Nielsen classes of/, then 

so that if all the JF» are inessential, L(f) = 0. On the other hand, there 
are examples of manifolds (in all dimensions), due to D. McCord 
[41 ], which admit homeomorphisms ƒ such that L ( f ) = 0 and yet 
N(f)^2. One obvious sufficient condition for L(f) = 0 to imply N(f) 
= 0 is to require X to be simply connected. A more interesting condi­
tion is due to Jiang [28] who associates with each/ : X—^X a subgroup 
J(f) of the fundamental group wi(X) as follows. Choose a base point 
XQÇZX and let e: Map(X, X)—*X denote the evaluation map at x0. 
Using ƒ as the base point in Map(X, X)} e induces 

(2) e#: 7n(Map(X, * ) , ƒ ) - > n(X9 ƒ(*„)) 

the image of e# is called the Jiang subgroup J(f) of/. I t is independent 
of the base point (assuming X is 0-connected) and depends only on 
the homotopy class of/. Alternatively, J (J) is the subgroup of Ti(X) 
generated by cyclic homotopies based at ƒ. 

3.1. THEOREM (JIANG [28]). If J(f)=Ti(X), then L(/) = 0 implies 
N(f) = 0. 

Actually Theorem 3.1 is a corollary of a more general result that 
states that if J(f)~TTi{X)y then all the Nielsen classes of ƒ have the 
same index. Since it is a tedious procedure to verify the Jiang condi­
tion for a given map ƒ it should be remarked that if we let J(X) denote 
J (identity) that J(X)QJ(f). Thus, the condition J(X)=TTI(X) is 
sufficient for the validity of Theorem 3.1 for all m a p s / . In addition 
to the trivial observation that J(X) =in(X) when X is simply con­
nected, it should be noted that J(X)=wi(X) wherever X is an 
iJ-space [28]. 

In the light of Theorem 3.1, it is natural to study N(f) under the 
assumption that L ( / ) T ^ 0 . Results on estimating N(f) under the 
hypothesis, as well as related results have been obtained by Jiang 
[28], Barnier [ l ] , Gottlieb [22], and Brooks and Brown [4]. 

We now turn to the problem of determining when the Nielsen 
number N(f) is the best possible lower bound on the number of fixed 
points that a map homotopic to ƒ can have. Since the fundamental 
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work on this problem is due to Wecken [50 ], we adopt the following 
definition. 

3.2. DEFINITION. An ANR X (compact metric) is called a Wecken 
space if for any m a p / : X—>X, there is a map g nomotopic to ƒ such 
that g has precisely N(f) fixed points. 

Wecken [50 ] proved 

3.3. THEOREM. Every (connected) finite polyhedron K with the 
property that Sta*—a is connected for every 0 or 1-simplex of K is a 
Wecken space. 

In the above Sta denotes the open star in K of the open simplex <r. 
Recently, Shi-Gen Hua [45] improved Weekend result as follows. 

3.4. THEOREM. Every (connected) finite polyhedron which contains a 
3-simplex and has the property that ôStp (ô = boundary) is connected for 
every vertex v, is a Wecken space. 

Thus, every triangulable manifold of dimension ^ 3 is a Wecken 
space. In this regard, R. F . Brown [ l0] , using some earlier results of 
Wier [51 ], has shown that every topological manifold (possibly with 
boundary) is a Wecken space. 

The next theorem is just an observation, but it is the key to the 
converse of the Lefschetz Fixed Point Theorem 2.1. 

3.5. THEOREM. Let X be a Wecken space satisfying the Jiang condi­
tion J(X) =TTI(X). Iff: X-^>X has L(f) = 0, ƒ is homotopic to a map g 
which is fixed point free. 

We may now state the Lefschetz Theorem 2.1 along with its 
converse. 

3.6. THEOREM. Let ƒ: X-+X denote a self-map of a Wecken space 
satisfying the Jiang condition J(X) =wi(X). Then L(f)^0 if, and only 
if y every map homotopic tof has a fixed point. 

Notice that the previously mentioned examples of D. McCord [41 ] 
show that the Jiang condition cannot be dropped in 3.6. 

A representative corollary of Theorem 3.5 (using R. F. Brown's 
result [l0]) is the following 

3.7. COROLLARY. Letf: M—>M denote a self-map of a compact, sim­
ply connected, topological manifold of dimension ^ 3 . If L(f)=0 then 
f is homotopic to a map g which is fixed point free. 

This corollary also follows from a result of F. B. Fuller [20] proved 
for triangulated manifolds and extended to topological manifolds 
in [17]. 
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3.8. THEOREM. Let X denote a space dominated by a finite n-poly-
hedron such that Hn{X\ Z) is torsion free» Let M be a compact topological 
n-manifold which is simply connected and let ƒ, ƒ' : X—+M be two given 
maps. Then, f is homotopic to g: X-+M such that g and f are coincidence 
free if, and only if, the {rational) Lefschetz coincidence class L(f, f') = 0. 

The proof of Theorem 3.8 is based on an obstruction theory argu­
ment. Corollary 3.7 follows by letting X = M, ƒ' = identity, and ob­
serving that L(f, id) = £(ƒ)/*, where fx is a generator of Hn(M, Z). 

As a special case of deforming a m a p / : X—>X to obtain a new map 
g which is fixed point free we have the problem of deforming the 
identity map to a fixed point free map. Clearly, a necessary condition 
is that x P O =L(id) = 0 , where x = Euler characteristic. For compact 
differentiable manifolds, this is just the classical problem of finding 
nonzero vector fields, and x = 0 is the classical necessary and sufficient 
condition given by Hopf [27]. 

The concept of nonzero vector field has its analogue in a topological 
manifold M using Nash's tangent space of paths [42], Briefly, a non­
zero path field is a map a : M—>Ml such that cr(x) is a path which starts 
at x and never returns to x. Obviously, if such a map <r exists, then 
<r(l) is a fixed point free map homotopic to identity. R. F . Brown [8] 
proved that x ( ^ ) = :0 is necessary and sufficient for the existence of 
a nonzero path field on M and the result was extended to topological 
manifolds with boundary in [ l l ] . I t is interesting to note that in the 
case of differentiable manifold a nonzero vector field implies the exis­
tence of a nonzero path field cr such that a(x) is a simple path (no 
self-intersections) for each x. I t is not known whether there is a 
corresponding result for topological manifolds. 

Recall tha t in the case of the identity map id: X—»X there is only 
one Nielson class. Thus if xC^Q =£( id ) = 0 and X is Wecken space, 
e.g., a polyhedron of dimension ^ 3 with ôSta; connected for any 
vertex v, then, since iV(id)=0, there is always a map / ~ i d , with ƒ 
fixed point free. 

3.9. THEOREM. If X is a Wecken space, then X admits a fixed point 
free map homotopic to the identity if, and only if, x(X)=0. 

Curiously, the identity map is easier to deform than an arbitrary 
map as the following result of Wecken [SO], [45] shows. 

3.10. THEOREM. Let X denote a finite polyhedron with the property 
that each maximal simplex has dimension ^ 2 and X is strongly con­
nected in the sense that given any two 2-simplexes cr and r there is a chain 
of 2-simplexes ai, • • • , o& such that <r = <ri, r—Qk and ai and 04+1 share 
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a common face of dimension 1, i = l, • • • , & — 1. 77&m, ^ identity 
map may be deformed into a map ƒ : X—*X which has no fixed points 
if x(X) = 0 or one fixed point if x(X) 5^0. 

I t is easy to show that a finite polyhedron X satisfies the hypoth­
eses in Theorem 3.10 if, and only if, no finite subset of X separates X. 

3.11. COROLLARY. If X is a finite polyhedron such that no finite sub­
set of X separates X, then X admits a fixed point free map homotopic to 
the identity if, and only if, x(X) = 0. 

A polyhedron X satisfying the hypotheses of Theorem 3.10 need 
not be a Wecken space. On the other hand it is a simple matter to 
show a polyhedron satisfying the hypotheses of Shi's Theorem 3.4 
cannot be separated by a finite subset. In this sense, Corollary 3.11 
is stronger than Theorem 3.9. 

4. The fixed point property. A space X has the fixed point prop­
erty (f .p.p.) if every map ƒ : X—>X has a fixed point. We will assume 
throughout this section that X is no more general than a connected 
compact metric ANR. The results of the previous section immediately 
imply the following theorems: 

4.1. THEOREM. If X is a Wecken space, X has f.p.p. if, and only if, 
N(f)9*0for every map ƒ : X—±X. 

4.2. THEOREM. If X is a Wecken space satisfying the Jiang condition 
J(X)—TTi{X)y then X has f .p.p. if, and only if, L(f)?£0for every map 
ƒ : X-*X. 

The usual method for showing that a space X has f.p.p. is to show 
that L(f) 5*0 for every m a p / . If X satisfies the Shi condition (namely, 
X is a polyhedron of dimension ^ 3 and 3Sü> is connected for every 
vertex v) and is also simply connected, then Theorem 4.2 says that 
any other method is equivalent to this method. 

There are times when it is convenient to use fields as coefficients 
other than the rationals Q. If A is any field and ƒ : X-+X, we have 
induced homomorphisms ƒ*&: H*(X; A)—>Hk(X; A) and the Lefschetz 
number over A is defined, just as in the rational case, by 

(1) L(f;A) « £ (~1)* Trace/*,. 
k 

We also have the Lefschetz Theorem: 

(2) ƒ fixed point free =» L(f ; A) = 0. 

Thus, to show that X has f.p.p., it suffices to show that L(f, A) 7*0 



18 EDWARD FADELL [January 

for every m a p / : X—>X, where À is any field (which might vary with 
ƒ). We might note too that we may use cohomology with coefficients 
in A to compute L(f; A). 

We can illustrate with simple examples. First consider complex 
projective space CPn, n even. If aÇzH2(CPn; Q) is a generator and 
ƒ: CPn-+CPn is a map, f*(a) —aa. Therefore, using the ring structure 
on H*(CPn; Q) we obtain 

(3) L(J) = 1 + a + a2 + • • • + a\ 

Now L ( f ) ^ 0 since the cyclotomic polynomial l+x+x2 + • • • +xn 

has no real roots when n is even. We conclude that CPn has f .p.p. for 
n even. The argument using Z2 is simpler. If j8 generates H2(CPn, Z2) 
and/*(j8)=è/3, then 

(4) L(f, Z2) = 1 + b + b* + • • • + 5». 

Since n is even, £(ƒ, Z%) — \ for 6 = 0, 1. Incidentally, this argument 
works just as well for real projective space RPn and quaternionic 
projective space HPn, n even. 

Now consider the suspension SCPn for n even. If 1, /?, /32, • • • , /3n 

are the nontrivial homogeneous elements of H*(CPn; Z%), let 1, 5/3, 
• • • , Sf3n denote the corresponding elements of H*(SCPn; Z2). I t is 

a simple matter to check that 5g2j8=]82, 5g2j83 = j84, • • • , and hence 
5g25]8 = 5j32, Sg2Sj83 = S/34, - • . Hence, if/: SCPn->SCPn is a map 
and /*(5/3<)=6<5/3<

l we have &i = &2, &s = &4, • • • , 6w-i = &». Thus 
L(f, Z2) = 1 and 5CPW has f.p.p. for n even. 

A few years ago I was struck by the fact that for all the examples 
of polyhedra that I knew had f.p.p., it sufficed to argue using Z2 

coefficients, i.e. one showed that L(f, Z2) = 1 for every self-map ƒ. 
This observation led to the following question. 

QUESTION A. Does there exist a polyhedron X with f.p.p. which 
admits a self-map ƒ such that L(f) is an even integer? 

We propose now to investigate what the implications of an affirma­
tive answer to Question A are, adding the assumption that X is also 
simply connected. 

We will consider the'following category 3\ The objects of SF are based 
maps ƒ : (X, XQ)—>(JST, X0) where X is a compact, simply connected, 
triangulable space with f.p.p. A morphism in (F, say <f> :ƒ—>ƒ', is a map 
where 

(X, *o) ~> (X, x0) 

(5) *i , i* 
(F,?o)^(F,;yo) 
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is a commutative diagram. Notice that if 0 is an equivalence in SF, <f> 
is a homeomorphism such that (f>f=f<t>. Using the wedge operation 

(6) ƒ V g: (X V F, (*o, yo)) ~> (X V F, (*0, y0)) 

where / : (X, #0)—>(X, x0), g: (F , ;yo)-*(F, ;y0), the category ^ admits 
a "sum" operation. Here we make use of the simple fact that the 
wedge of two spaces with f.p.p. also has f.p.p. If we let [#] denote the 
isomorphy classes of $ under equivalence, this wedge operation makes 
[$] into an abelian semigroup with zero. The zero element corre­
sponds to a point-map XQ—>XO. 

If ƒ£$» we let L(f) denote the reduced Lefschetz number of/, i.e., 

(7) Z(/) = E ( - l ) * Trace/,*. 
fcèi 

Of course, L(f)=L(f)~l since we are dealing only with connected 
spaces. I t is immediate that 

(8) L(fVg) = L(f) + L(g). 

Furthermore, if ƒ and g are equivalent in 9r, L(f)~L(g). This means 
that Z induces a homomorphism 

(9) Z : [ f f ] - Z . 

We wish to investigate what the consequences of the following 
hypothesis are. 

HYPOTHESIS B. There is a simply connected polyhedron X which 
admits a m a p / : X—>X such that L(f) is even. 

4.3. THEOREM. Hypothesis B implies that L in (9) is surjective. 

PROOF. If we let x denote the reduced Euler characteristic, then 

(10) x(CPw) = n, x(SCP») = - ». 

Since CPn and SCPn have f.p.p. for # even, it follows that the image 
of Z contains the even integers. Hypothesis B asserts that the image 
of L contains some odd integer. This implies that L is surjective. 

If we let [CFp^G^F] denote the corresponding Grothendieck group 
of [&], then Theorem 4.3 implies that G[$] contains Z as a direct 
factor. A more interesting corollary is the following. 

4.4. COROLLARY. Hypothesis B implies there exists a simply con­
nected polyhedron X with f.p.p. which admits a self-map ƒ such that 
L(f)«0. 
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Thus Hypothesis B implies the existence of a simply connected 
counterexample X to Theorem 4.2. I t is easy to see that X (assuming 
dim X è 3) must be a nontrivial wedge of two subpolyhedra. 

The following simple lemma implies additional interesting conse­
quences of Hypothesis B. 

4.5. LEMMA. Given maps ƒ: X-*X, g: Y-+Y we have L(fXg) = 
L(f)L(g), L(Sf) - - Z ( f ) , L(f Ag) «L(f)L(g) and L(f o g) = -Z(f )Z(g) , 
wÂertf S=suspension, A—smash product, and o —join. 

4.6. COROLLARY. Hypothesis B implies that for each of the following 
constructions C, there exists a simply connected polyhedron X with f .p.p. 
such that C(X) admits a self-map f with L(f) = 0: 

(a) C(X)=XXI, 
(b) C(X)~XXX, 
(c) C(X)=SX, 
(d) C{X)=XAX, 
(e) C ( I ) = I o I . 

PROOF. For (a) and (b), choose g £ $ such that L(g) = 0. Then 
ƒ = g X i d works in both cases. With this same g, L(g og) = 0 so that, 
f—gog works for (e). For (c), choose gE:$ such that L(g) = 2 . Then 
/ = S g has £,(ƒ) = 2 - L ( g ) = 0 and this ƒ works for (c). Finally, for (d) 
we will need a space X which admits two self-maps gi and g2 such that 
L(g i )=0 and L(g 2 )=2. Then L(giAg2)=L(g1)L(g2) = - 1 and hence 
f — giAg2 will do the job. This is easily accomplished by choosing 
X — A \/B, where g{ : A —>A, gi : B—>B are chosen in so that L(g{ ) = 0, 

The next lemma makes things even more interesting. 

4.7. LEMMA. If X is a simply connected polyhedron (dim X*z2), 
then for each of the constructions C in Corollary 4.6, C(X) is simply 
connected and satisfies the Shi condition (dim C(X) à 3 and in some 
triangulation of C(X), dStfl is connected for every vertex v). The smash 
product requires taking as base point (XQ, yo) where XQ and y0 are not 
separating points. 

4.8. COROLLARY. Hypothesis B implies that for each of the construc­
tions C in Corollary 4.6, there exists a simply connected polyhedron X 
with f .p.p. such that C(X) fails to have ƒ. p.p. 

Summarizing, Hypothesis B implies 

4.9. THEOREM. In the category of simply connected polyhedra, the 
fixed point property is not invariant under cartesian products, cartesian 
product with I, suspension, smash product, join or homotopy type. 
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Results corresponding to those in Theorem 4.9 in more gen­
eral categories (e.g. compact connected metric spaces) are known 
(Kinoshita [30],Connell [ l2],Knill [31 ]). The examples involved are 
not locally contractible. 

W. Lopez [38] was the first to verify Hypothesis B. He considered 
the space 

(11) X = CP2 yJSx X 5 2 U CP* 

where Si and 52 are 2-spheres with Si identified with CPlQCP2 and 
52 identified with CPlQCP4. A simple computation shows that 
x(X)=8. Using the cohomology ring of -X", he was able to show that 
L(f) 5*0 for every self-map ƒ of X so that X has f.p.p. This example 
gives more than required in Hypothesis B since the identity map 
id: X—+X does the job. Notice the X\JSCPZ has Euler characteristic 
0 so that this wedge is a specific example verifying Corollary 4.4. In 
addition to Theorem 4.9, we mention two other anomalies. First of 
all, XöiSCPs = A does not have f.p.p., where Ur denotes union along 
an edge. This is because A is a simply connected Wecken space. On 
the other hand, we can attach a two cell D2 to X\/SCPB along an 
edge in two different ways, preserving f.p.p. one way (Figure la) and 
destroying f.p.p. it with the other (Figure lb ) . 

(a) (b) 

FIGURE 1 

REMARK. Outside of the ANR category, R. H. Bing [2] has con­
structed an example of a one dimensional continuum C with f.p.p. 
such that adding a 2-cell along a 1-cell destroys f.p.p. 

After the publication of Lopez's example, G. Bredon supplied 
another, namely quaternionic projective 3-space, HPZ which has 
Euler characteristic 4. This was surprising since the corresponding 
real and complex projective spaces do not have f.p.p. Making simple 
use of the Steenrod algebra <3t(3), Bredon showed that HPZ does not 
admit a self-map ƒ such that /*(a) = — a where a £ i ï 4 ( H P 3 ) is a 
generator. Since 
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(12) L{f) = 1 + a + a2 + a* 

if ƒ*(«) = a a , L{f) ^ 0 for any map ƒ and HPZ has f.p.p. A similar argu­
ment shows that all the quaternionic projective spaces HPk have 
f.p.p. for k^2. 

We may summarize by stating that in the category of simply 
connected polyhedra, the f.p.p. behaves badly with regard to geo­
metric constructions except for the wedge operation. This naturally 
leads us to study f.p.p. in more restrictive categories. We have in 
mind four possibilities; 

(a) Category S : Polyhedra satisfying the Shi condition. 
(b) Category So- Spaces in Category S Satisfying the Jiang con­

dition. 
(c) Category SfTC: Compact topological manifolds, d i m e 3 . 
(d) Category 9fïl0: Spaces in Category 9tfl satisfying the Jiang 

condition. 
Fortunately, there are a few positive results. The following simple 

theorem has interesting consequences. 

4.10. THEOREM. Iff: X->Yis a map where Y belongs to $ or 'M and 
has f.p.p-, then the mapping cylinder M{f) has f.p.p. {recall X is a 
compact metric ANR). 

REMARK. If X belongs S0 (or 2fH0) and has f.p.p., then using results 
of Jiang [26], it follows that X is simply connected. 

4.11. COROLLARY. If X has the same homotopy type as a space Y 
belonging to S or 9ÏÏ which has f .p.p., then X has f .p.p. 

4.12. COROLLARY. If X belongs to $ or M and has f.p.p., then XXI 
has f.p.p. 

4.13. COROLLARY. If X belongs to $ or M and has f.p.p., then 
Z = X\JY'has f.p.p. when Y and XC\Y are ARs. 

REMARK. In Corollary 4.11 it is only necessary that X is dominated 
by Y. 

The most interesting positive result would be the product theorem 
in the categories So, S, S^o, 9TC. 

4.14. QUESTION. If X and Y belong to S0 (or S, 3ïl0» 9îl) and both 
have f.p.p., does XX Y have f.p.p.? 

I t is difficult to conjecture whether the answer to Question 4.14 is 
affirmative or negative. However, the following examples illustrate 
that the f.p.p. behaves badly even in the more restrictive categories 
and this makes one suspicious of an affirmative answer. 
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Let 

(13) K = HP^\JiSHPs 

where Ur = union along an edge, and 

(14) M = RP*#HP2 

where # denotes connected sum. Both K and M can be shown to have 
f.p.p. [18]. 

The polyhedron K is simply connected and satisfies the Shi condi­
tion so that i££So. However x(K)—2 and hence x(SK)=0 and 
x(KoK)=0. By Corollary 3.11 neither SK nor K o K have f.p.p. 
On the other hand KXI has f.p.p. 

4.16. THEOREM. The f .p.p. is not invariant under suspension and 
join in the category So-

Except for the fact that M is not simply connected (it does not 
satisfy the Jiang condition), M behaves like K. First of all, the ra­
tional cohomology of M is that of a 4-sphere so that x ( ^ ) = 2. This 
implies x(SM) = 0 = x(^f ° M). Again, using Corollary 3.11, we see 
that S M and M o M fail to have f.p.p. On the other hand, both M XI 
and MXM have f.p.p. [18]. 

4.17. THEOREM. The f .p.p. is not invariant under suspension and 
join in the category 9TC. 

We are left with some more questions. 
4.18. QUESTION. What is the behavior of f.p.p. with regard to 

suspension and join in the category of simply connected manifolds? 
4.19. QUESTION. What is the behavior of f.p.p. under smash prod­

uct in S, So, 9Hfl and 2fTC0. 
We close this section with one more question. This pertains to the 

necessity of assuming the Jiang condition in Theorem 4.2. 
4.20. QUESTION. Does there exist a space X in S (or 9E) with f.p.p. 

which admits a self-map ƒ such that L(f) = 0? 

5. Fixed points for iterates. Often it is useful to know whether 
some iterate/* of/: X—+X has a fixed point. Representative results in 
this direction has been obtained by F. Browder [5] and F. B. Fuller 
[19]. More recently a simple method for determining whether some 
iterate of ƒ has a fixed point has evolved which is worthy of mention. 
The tool is contained in a paper of Kelley and Spanier [29] and also 
in the work of Hajek [23]. Both Halpern [24] and Hajek [23] used 
this tool to obtain results in this direction and to provide an alterna-
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tive proof for Fuller's result [19] that if/: X—>X is a homeomorphism 
and x P Q ^ O , then some iterate of ƒ has a fixed point. In this section 
we will give the details of the method and illustrate the technique 
with a proof of Fuller's generalization [2l] of his aforementioned 
result. 

Let Q denote the field of rationais and Q(X) the field of rational 
functions over Q. Let e: 0(\)-->0(X) denote the multiplicative auto­
morphism given by e(f(\)) = / ( l / \ ) a n d <Z: Q(X) — 0—*Q(X) the formal 
logarithmic derivative defined by q(r(\)) = r'(X)/r(X). We let 

(1) Z> = qeiQÇK) - O - > 0 ( X ) 

and note that D takes products into sums and D(J) = 0 if, and only if, 
ƒ is constant. 

Each nonzero element of Q(\) has a unique formal expansion of the 
form 

•(JH-(2) Xw ( 23 a ^ ) 9 ao 5̂  0, m an integer. 

The basic idea is to look at the series form (2) of the image under D of 
the characteristic polynomial of a linear operator. 

Let T:A-*A denote a linear operator where A is a vector space 
over Q of finite dimension m and/(X) = j XZ— 7"J the corresponding 
characteristic polynomial. Working over the complex field C, we may 
write 

(3) /(X) = (X - * ) • • • (X - em) 

and hence 

(4) r(X) =/(1/X) = X—(1 - \e0 • • • ( ! - Xem), 

(5) 

Therefore 

,(x) = (_^)f(x)_t(_jy,(x, 

(6) aw» = -^f = - - - £ r-̂ — 

If we expand (6) using 

(7) — - ej(l + \ej + \e) + • • • ) 
1 — Xey 

we obtain 
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(8) D[f(X)] = - ~ - E (ex + • • • + ek
m)\k-\ 

Using the Jordan canonical form for T, we recall that 

(9) Trace (T*) = Tr(T*) = e\ + • • • + L 

Hence we arrive at 

5.1. LEMMA. Iff(\) = |XZ— 7"|, where T: A—*A is a linear operator 
and dim A = w , then 

00 

(10) D[F(X)] = - £ TrfT^X*-1. 

Now, if <t>: X—+X is a map where X is a compact metric ANR, we 
call 

(ID /a) = n i w - * * 2 « i / n ix'-***«+ii 
the characteristic f unction for # where 

(12) <l>*q: H«(X)-» Hq(X) 

are the induced homology endomorphisms (rational coefficients). 
Lemma 5.1 implies 

5.2. LEMMA. If f(K) is the characteristic function f or <f>: X-+X, then 

(13) D[f(\)] - - £ L(«*)X*-i. 

5.3. DEFINITION. If/(X) is the characteristic function for 0 : X—*X 
and 

(14) r(\) = ^ 1 ^ = X~x ( l + Z a,X') 

and call the coefficients ay, j è 1, the canonical coefficients of 0. Here 
x=xP0. 

Now if one uses (14) to compute r'(k)/r(\) and equates the result 
with (13) we see that 

(15) o,- = 0 for 1 ^ j < s «=» L(*0 = 0 for 1 ^ y < 5. 

Thus we arrive at the following tool. 

5.4. THEOREM, /ƒ <j> is a self-map of a compact metric ANR X and 
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one of its canonical coefficients a&^O, then one of the iterates $, <£2, 
• • • , <t>k has a fixed point. 

It is easy to see that a\ — — L{<1>) so that the above theorem may be 
regarded as a generalization of the Lefschetz Fixed Point Theorem. 

Before we use Theorem 5.4 to prove Fuller's Theorem [21 ], we 
need to recall a simple fact. If T: A—>A is a linear operator on a vector 
space A over Q of dimension m, let p denote the minimum rank of all 
the iterates of 2". If we write |\J— 2"| =(X — ei) • • • (X — em), then p 
is just the number of nonzero e/s (multiplicity allowed). 

If 0: X-+X is a map, let pq denote the minimum rank to which the 
iterates of #*« descend, and set 

(16) F(<t>) = £ ( - 1 ) % . 

5.5. THEOREM (F. B. FULLER). If <f> is a self-map of an ANR X and 
the Fuller index F(<j>) 5̂ 0 then one of the iterates c/>k has a fixed point where 

k g max ]£) p2«, ]C p23+i • 
L q q J 

PROOF. Let us write the characteristic function /(X) for <f> in the 
form 

(17) f(\) = »(A)MX) 
where 

(18) «(X) = I f I */ - <Ê*2« I = X" + CiX»-1 + • • • + cn 

and 

(19) d(X) = I I I X/ - **2*+i | = A- + JxX-1 + •••+<*». 

If we let 

then 

s — 2J P23, 2 == z2 P23+1 

s = maximum j such that 

J = maximum j such that 

Furthermore, 

« - M i ) - ^ 

Ci 9* 0 , 

<*, ^ 0 . 

• • • + c„X») 

• • + <*mXm) 
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Therefore, in terms of the canonical coefficients ay, we have 

1 + ClA + • ' • + Cn\
n 

= (1 + iiX + • • • + 4»Xm)(l + aiX + a2X
2 + • • • ) 

and equating coefficients 

(22) Ck = &k + ajc-idi + • • • + aidk-i + <&. 

If s>t, set k = s in (22) and we see that not all of the canonical coeffi­
cients ai, • • • , as can vanish since d8 — 0. Therefore, for some k^s, 
<t>k has a fixed point. If s<t, we set k~t in (22) and obtain for some 
kSty(/>k has a fixed point. 

5.6. COROLLARY (FULLER) . If <f>: X—>X is a homeomorphism and 
x(X)?'£0, then some iterate of <f> has a fixed point. 

5.7. COROLLARY (HALPERN, H A J E K ) . If $: X-+X is a map and the 

rational homology of X vanishes in odd dimensions, then some iterate of 
<j> has a fixed point. 

5.8. REMARKS. Theorem 5.4 requires only that the Lefschetz 
Fixed Point Theorem be valid for the space X. I t therefore applies to 
weak semicomplexes [46], for example. The proof of Theorem 5.5 is 
a variation of Halpern's proof of Corollary 5.6. 

ADDED IN PROOF. The example RP* # HP2 in §4 which was used 
to prove Theorem 4.17 is incorrect. However, the manifold HP2 # HP2 

has f.p.p. and may be used instead [18]. Since HP2 # HP2 is simply 
connected we also have an answer to Question 4.18. The argument 
that a self-map ƒ of RPS # HP2 has fixed points requires that ƒ does 
not kill the nontrival element of ir\(RP% f HP2). Furthermore, as 
pointed out to me by Richard Goldstein, RP* # HP2 admits fixed 
point free maps. 
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