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Let W(z) be a complex valued entire function of exponential type
with nonnegative values on the real axis. We call W(2) factorable if

W(z) = A*(2)A(3)

where 4 (z) is an entire function whose restriction to the upper half-
plane is an outer function. Here A*(z) = 4(2). Recall that an outer
function in the upper half-plane is a function of the form
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where C is a constant of absolute value 1, k(¢) =0 a.e. on (— 0, «),
and (14¢2)~logk(t) EL!(— », »). Of necessity, k(x) =lim|f(x+iy)[
a.e. where the limit is taken as y decreases to zero. Therefore the re-
striction of an entire function 4 (2) to the upper half-plane is an outer
function if and only if (142! log| A(t)| E€LY(— », ) and
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The following facts are available from the classical theory of entire
functions:
(1°) for W(z) to be factorable, it is necessary and sufficient that
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(2°) if W(2) is factorable, the factor 4 (2) is determined to within
a multiplicative constant of absolute value 1,

(3°) if W(z) is factorable, say W(z) =A*(2)A(2) as above, and if
W(z) is of exponential type 7, then exp(—3472)A4 (2) is of exponential
type 37. See [2, p. 125], [3, p. 34], and [4, p. 437], where some original
sources are cited. The purpose of this note is to communicate exten-
sions of these results to operator valued entire functions.
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Let @ be a separable complex Hilbert space. By a vector or opera-
tor valued function we shall mean a function whose values are vectors
in € or bounded operators on @ respectively. Analyticity is defined
in the weak sense. The bar of a bounded operator on @ denotes its
adjoint, and we use the notation 4 *(z) =4 () for operator as well as
scalar valued entire functions. By Hg we mean the Hardy space of
vector valued analytic functions f(2) defined for ¥ >0 such that
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If ® is a closed subspace of @, Hg denotes the closed subspace of H3
of functions with values in ®. An operator valued analytic function
A(2) defined for y>0 is called outer if there exists a bounded scalar

valued outer function f(2) such that

(i) B(2) =f(2)A(z) is bounded for y>0, and

(ii) the range of multiplication by B(z) in Hg is dense in a subspace
of the form H§.
In this case the closed subspace ® of € implied in (ii) does not depend
on the choice of f(2), and we say that A(z) acts in ®. A vector valued
entire function f(z) is said to be of exponential type 7, 720, if for
every vector ¢ in @ the scalar valued entire function f.(z) = (f(z), ¢)e
is of exponential type 7. An operator valued entire function W(z) is
said to be of exponential type if for every vector ¢ in € the vector
valued entire function W(z)c is of exponential type 7(c) for some
number 7(¢) =0.

Let W(z) be an operator valued entire function of exponential
type which has nonnegative values on the real axis. We call W(z)
factorable if

W(z) = A*(3)A(2)

where A(2) is an operator valued entire function whose restriction
to the upper half-plane is an outer function. We can now state our
main results. Let I denote the identity operator on €.

THEOREM 1. Let W(2) be an operator valued entire function of expo-
nential type which has nonnegative values on the real axis. Assume that
there exists a scalar valued entire function w(z) of exponential type such
that

W(x) < wx)I

for all real x. If w(z) is factorable, then so is W(z).
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THEOREM 2. Let W(2) be an operator valued entire function of ex-
ponential type which has nonnegative values on the real axis. For each
i=1,2,let

W(z) = 4;(2)45(2)

where A;(2) is an operator valued entire function whose restriction to the
upper half-plane is an outer function, and let this outer function act in
the subspace ®; of C. Then

A2(2) = UAs(2)

where U is a partially isometric operator on C with initial set By and
final set ®.

THEOREM 3. Let W(z) be an operator valued entire function of ex-
ponential type which has nonnegative values on the real axis. Assume
that W (2) admits a scalar dominant as in Theorem 1. Assume that the
scalar dominant is factorable, and let

W) = A*(z)Az)

where A(2) is an operator valued entire function whose resiriction to the
upper half-plane is an outer funciion. If for some vector ¢ in €, W(z)c
is of exponenital type 7(c), 7(c) =0, then exp(—2%ir(c)z)4A(2)c is of
exponential type ir(c).

Consider the case dim@< . Let W(z) be an entire function of
exponential type which has nonnegative values on the real axis. If

f+°° log*[tr W (x)]

g dx < o,
— x

then W(z) is factorable. For in Theorem 1 we may choose w(z)
=trW(z).

Another corollary is valid for an arbitrary separable coefficient
space C. Let W(z) =Co+Ciz+ - - - +Coyz?N be a polynomial with
operator coefficients which has nonnegative values on the real axis.
Then

W(z) = 4*(3) A(2)

where A(z)=A¢+A41z+ - - - +AN2z" is a polynomial with operator
coefficients whose restriction to the upper half-plane is an outer
function.

Proofs of these results will appear elsewhere. Theorem 2 is a special
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case of a more general assertion concerning outer functions. It is
deduced from [6, Theorem 3]. In the case where W(z) is bounded on
the real axis, i.e. when we can choose w(z) to be a positive constant,
Theorems 1 and 3 are proved using a Hilbert space method originated
by D. Lowdenslager [5] and developed by the first author [6]. The
general cases of Theorems 1 and 3 are obtained from this special
case by means of a theorem of A. Beurling and P. Malliavin [1].
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