SMOOTH HOMOTOPY PROJECTIVE SPACES
BY CHARLES H. GIFFEN!
Communicated by William Browder, September 19, 1968

Introduction. In [5] we considered certain fixed point free involu-
tions on Brieskorn manifolds as weakly complex bordism elements.
In [4] we considered associated examples of smooth normal invariants
for real projective spaces, settling the realizability question for dimen-
sions #1 mod 4 and the desuspendability question for dimensions
4k-1. The object of this study is the classification of these smooth
normal invariants given by the Brieskorn examples. Our results over-
lap somewhat with Atiyah and Bott [2] as well as Browder [3], but
our methods are entirely different and our results rather more refined.
Full details of these and related results will appear elsewhere.

1. Smooth normal invariants. Following Sullivan [6], we regard
a smooth normal invariant of a space X as an element of [X, G/0].
Of course, we have G/0=2SG/SO. We need the fibers SG/Spin of
BSpin—BSG and SO/Spin~P> of BSpin—BSO. The spaces SG/SO,
SG/Spin, SO/Spin have their Whitney H-space structures under
which the sequence

S0/Spin — SG/Spin — SG/SO

is a multiplicative fibration.

A map u: SG/Spin—BO is constructed as follows. Let vy, denote
the universal fiber space over BSG, with fiber S*1, 8, the pullback
to BSpin,, and «a, the pullback to SG,/Spin,; also, let ¢, denote the
S»—1 fibration over a point. Corresponding to the commutative
diagram

. /BSpin,. ~
SG,./Spina BSG,
—~— (5t} _—

of spaces, there is the commutative diagram
/ ﬁn \
an 7-
\ . /
n
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of induced S fibrations. Passing to Thom spaces we obtain a com-
mutative diagram of spectra

MSpin
N(SG/Spin) < >MSG
s

where S is the sphere spectrum and N(SG/Spin) is the spectrum with
N(SG/Spin), =T (an)~S* \ (SG,/Spin,)*. There is a map of spectra
MSpin—b0, where bO is the Q-spectrum with 50,=2ZX B0, defining
the kO-orientation of Spin cobordism. Now the composition

N(SG/Spin) — MSpin — b0

of maps of ring spectra defines u: SG/Spin—BO in the usual way,
since N(SG/Spin) and S/ (SG/Spin)* are equivalent.

(1.1) THEOREM. The map u: SG/Spin—BO is an H-map from the
Whitney structure of SG/Spin to the tensor product structure of BO.

The following is a central fact in our study.

(1.2) THEOREM. The composition

P» ~ 50/Spin — SG/Spin — BO

classifies the canonical line bundle n over P>.

Since this map 5: P*—BO splits the map w,: BO—K(Z,, 1)~P>,
we get the following easily.

(1.3) CorOLLARY. The above maps fit into a commulative diagram
P* — SG/Spin — G/0

I lu R%
2 BO —BSO

of maps of H-spaces (BO and BSO with the tensor product structure),
each row being a multiplicative fibration.

Using Poincaré duality for Spin cobordism theory, we are able to
make explicit computations of the kQ-orientation u: SG/Spin—BO.
This amounts to interpreting N(SG/Spin)—MSpin in terms of Spin
bordism of Spin manifolds.

For a finite CW complex X, we take a homotopy equivalent com-
pact Spin manifold M™. An element of [M™, SG/Spin] is represented
by a spherical fiber bundle over M™ with Spin structural group and
an SG (i.e. degree +1 fiber homotopy) trivialization. Using transverse
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regularity on the SG trivialization, we obtain an element [V™, dV™; ¢]
€QFin(Mm, dM™) of degree +1 (e is the bundle projection). The
Poincaré duality isomorphism sends this to an element of Q%;,(M™)
with augmentation +1. Now applying the kQO-orientation of Spin
cobordism, we obtain a virtual line bundle over M™, i.e. an element of
[Mm, BO]. This describes the natural map [X, u]: [X, SG/Spin]
—[X, BO].

2. Spin cobordism of projective spaces. At this point the Brieskorn
examples are brought into play. The degree ¢ maps k: Q5 '—P4%-!
of [5, §3] may be taken to represent elements [Q¥*?, 1] € Q™ (P4-1)
in a canonical way so that the following analogue of [5, Theorem 3.4]
holds.

(2.1) THEOREM. The Poincaré duals b1 EQuW (PYY) of the ele-
ments [Q*~Y, B]CQP™ (P¥-1) satisfy b*~1=gq-1.

It happens that k: Q- '—P#%-1 js a diffeomorphism, making it
clear what Spin structures to use. Actually, the above holds equally
well for Sp and SU cobordism of P41,

To see what happens for other dimensions, just cut the maps
h: Q¥~'—>P%-1 down to a suitably small smooth regular neighbor-
hood of P*C P%-1, obtaining h: V¥ "—M4%-1.n, say. Note that the
Brieskorn examples Q7 of [4] are the transverse regular inverse images
in Q! of P»CP*%1 The resulting elements b;E 28, (P") are just
the inclusion induced pullbacks of the elements b$*~! for n <4k —1.

(2.2) COROLLARY. In Q% (P") we have b} =g-1.

The double covering e: S#~1—P%-! defines the element [S%-!, ¢]
cQSrin (P#-1) of degree +2. For each n, Poincaré duality and pulling
back from P%-1 to P» produce the elements s"&Q3,,(P") with aug-
mentation +2. To emphasize the fact that s*s£2-1 we point out the
following.

(2.3) THEOREM. Under the kO-orientation morphism
Qspia(P") — 0" (P")
sm—1 -1, where 0 is the canonical line bundle.

The following, on the other hand, is straightforward geometry.

(2.4) PROPOSITION. For any integer j there is a map

4k—1,n 4k—1,n 4k—1,n 4k—1,n.

K: Ve ",V )M , OM )
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of degree g+2j such that the Poincaré dual of [VE=1* qV¥-1» '] 4s
by +j - 5" E Wpin (P™).

3. The Brieskorn normal invariants. In [4] we pointed out how the
Brieskorn examples Q3;,; produce smooth normal invariants of P».
Here we show how these examples lead to elements of [P*, SG/Spin]
compatible with the machinery of the previous section.

As remarked in [4], each Qf} is homotopy equivalent to P4+,
Consequently the map

haars: (Vaaid s 0Vaasn ) — (L, gyt
of degree +1 provided by (2.4) is a homotopy equivalence of Spin
manifolds. Now the construction of [6] produces in our case a “classi-
fying” SG/Spin-bundle over M#+3.4+1~P4+1 for hyy,,, i.e. an ele-
ment ahi1 € [P%+!, SG/Spin]. Restriction to P*CP%+! defines the
element a3, E [P, SG/Spin].

Now we follow the description of [P, u] as given in §1. We find
that a3, leads to the element b3, , —d-s"E Qi (P) which by (2.2)
and (2.3) is sent (under kOQO-orientation) to the element 1+4d-£
Ek0°(P"), where £ =1—1. This gives our main result on the Brieskorn
examples.

(3.1) THEOREM. Under kO-orientation we have

[P", ul(aharr) = 1+ d-¢
as a virtual line bundle over P,

Numerous results follow from (3.1), in particular the following
which stems from (1.3).

(3.2) THEOREM. The natural maps
[Pn, u]: [P, SG/Spin] — [P, BO],
[P, ¥]): [P, G/O] — [P, BSO],

are epimorphisms of groups (where BO and BSO have their tensor
product structures).

Results of Browder [3] can be applied to show that the epimor-
phisms in (3.2) are canonically split—in fact, that [P», v] classifies
the Brieskorn examples of smooth normal invariants for P». Simi-
larly, [P®, u] classifies the Brieskorn elements a3, ,E [P, SG/Spin].
Browder’s results alone do not give this except for #<5.

4. Numerical results. By results of Adams [1], R0°(P*) = KO(P™)
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is the commutative ring generated by 1 and £=1—9 subject to the
relations £2=2-£ and a@a41-£=0, where a; is given by the table:

k|1 23 4567 8---j+8
all 2 4 4 8 8 8 8---16q;

Now it is clear that the multiplicative group of virtual line bundles
1+d-t€ [P~ BO] is isomorphic to Z;XZ,,,,2. Moreover, the two
generators 1 —£=7 and 1—2-§=2-9p—1 of [P*, BO] generate the Z,
and Z,_,, factors corresponding to [P, P*] and [P*, BSO], respec-
tively—as indicated in the following diagram:

[P, P<] = [P, BO] = [Pr, BSO]
IR IR IR
Zy @2 XZapnn@ Zagun

(4.1) THEOREM. There are ani1/2 distinct Brieskorn smooth normal
invariants of Pn.

(4.2) COROLLARY. There are auy2/2 = 2% smoothly distinct Brieskorn
homotopy projective (4k-+1)-spaces. For k>0, these yield only 4 combi-
natorially distinct homotopy projective (4k--1)-spaces.

(4.3) COROLLARY. For n#1 mod 4 and n>S5, there are any1/4
smoothly distinct homotopy projective n-spaces which yield only 2 combi-
natorially distinct homotopy projective n-spaces.
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