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Introduction. In [5] we considered certain fixed point free involu­
tions on Brieskorn manifolds as weakly complex bordism elements. 
In [4] we considered associated examples of smooth normal invariants 
for real projective spaces, settling the realizability question for dimen­
sions ^ 1 mod 4 and the desuspendability question for dimensions 
4& + 1. The object of this study is the classification of these smooth 
normal invariants given by the Brieskorn examples. Our results over­
lap somewhat with Atiyah and Bott [2] as well as Browder [3], but 
our methods are entirely different and our results rather more refined. 
Full details of these and related results will appear elsewhere. 

1. Smooth normal invariants. Following Sullivan [6], we regard 
a smooth normal invariant of a space X as an element of [X, G/0]. 
Of course, we have G/O^SG/SO. We need the fibers SG/Spin of 
BSpin->BSG and S0/Spin~P« of BSpin->BSO. The spaces SG/SO, 
SG/Spin, SO/Spin have their Whitney ü-space structures under 
which the sequence 

SO/Spin -> SG/Spin - • SG/SO 

is a multiplicative fibration. 
A map p: SG/Spin—»B0 is constructed as follows. Let 7» denote 

the universal fiber space over BSGn with fiber S»""1, /S» the pullback 
to jBSpinn, and an the pullback to SG»/Spin»; also, let e„ denote the 
Sn~l fibration over a point. Corresponding to the commutative 
diagram 

^^^-^.BSpin» **^^^ 
5Gn/SpinnC^_ J^BSGn 

^ ^ M ^^ 
of spaces, there is the commutative diagram 
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of induced S11"1 fibrations. Passing to Thorn spaces we obtain a com­
mutative diagram of spectra 

"MSpin 
N(SG/Spin) C J^MSG 

where S is the sphere spectrum and iV(5G/Spin) is the spectrum with 
N(SG/Spin)n = T(an)~Sn A(SGn/Spinn)+. There is a map of spectra 
MSpin—>bO, where hO is the Q-spectrum with bO0 = ZXBO, defining 
the &0-orientation of Spin cobordism. Now the composition 

N(SG/Spin) -» MSpin -> hO 

of maps of ring spectra defines JU: SG/Spin—>BO in the usual way, 
since N(SG/Spin) and SA(SG/Spin)+ are equivalent. 

(1.1) THEOREM. The map /*: 5G/Spin—>BO is an H-map from the 
Whitney structure of SG/Spin to the tensor product structure of BO. 

The following is a central fact in our study. 

(1.2) THEOREM. The composition 

P» ~ SO/Spin -» SG/Spin - • BO 

classifies the canonical line bundle rj over P00. 

Since this map 77: P°°—»i?0 splits the map W\\ BO->K(Z2, 1)~P°°, 
we get the following easily. 

(1.3) COROLLARY. The above maps fit into a commutative diagram 

J*°-*SG/Spin->G/0 

II !/* lv 
p»l> BO ->BSO 

of maps of H-spaces {BO and BSO with the tensor product structure), 
each row being a multiplicative fibration. 

Using Poincaré duality for Spin cobordism theory, we are able to 
make explicit computations of the fcO-orientation JJL: SG/Spin—>BO. 
This amounts to interpreting iV(SG/Spin)-->MSpin in terms of Spin 
bordism of Spin manifolds. 

For a finite CW complex X, we take a homotopy equivalent com­
pact Spin manifold Mm. An element of [Mm, 5G/Spin] is represented 
by a spherical fiber bundle over Mm with Spin structural group and 
an SG (i.e. degree + 1 fiber homotopy) trivialization. Using transverse 
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regularity on the SG trivialization, we obtain an element [Vm, dVm; e] 
EtiS?*(Mm

9 dMm) of degree + 1 (e is the bundle projection). The 
Poincaré duality isomorphism sends this to an element of Qspin(-^m) 
with augmentation + 1 . Now applying the &0-orientation of Spin 
cobordism, we obtain a virtual line bundle over Mm, i.e. an element of 
[Mm, BO]. This describes the natural map [Xy 11]: [X, SG/Spin] 
-+[X,BO]. 

2. Spin cobordism of projective spaces. At this point the Brieskorn 
examples are brought into play. The degree q maps h: QP~l-*P4k-i 
of [5, §3] may be taken to represent elements [of"1, AjGOSffiCP4*""1) 
in a canonical way so that the following analogue of [5, Theorem 3.4] 
holds. 

(2.1) THEOREM. The Poincaré duals bf'1 Gespin(P4*""1) of the ele­
ments [Qf- \ AjGÎÎ^CP4*-1) satisfy ft*"1 = 2-1. 

It happens that h: of"1—•P4*-1 is a diffeomorphism, making it 
clear what Spin structures to use. Actually, the above holds equally 
well for Sp and SU cobordism of P4*-1. 

To see what happens for other dimensions, just cut the maps 
^ : Of ~"1—^P4*"1 down to a suitably small smooth regular neighbor­
hood of P^CP4*"1, obtaining h: F4*"1'n-^Af4*-1-n, say. Note that the 
Brieskorn examples QJ of [4 J are the transverse regular inverse images 
in Çf -1 of PnCP4Jfc~1. The resulting elements ^GOsPin(Pn) are just 
the inclusion induced pullbacks of the elements bf""1 for w^S4è — l. 

(2.2) COROLLARY. In QsPill(P
n) we have 6J=g-l . 

The double covering e: S ^ - i ^ p ^ - i defines the element [S4*-1, e] 
GQSSICP 4 *" 1 ) of degree + 2 . For each w, Poincaré duality and pulling 
back from P4*-1 to P n produce the elements snEflsPm(Pw) with aug­
mentation + 2 . To emphasize the fact that sn7*2-1 we point out the 
following. 

(2.3) THEOREM. Under the kO-orientation morphism 

OSpin(Pn)^*0*(PW) 

s"y-+\ +îj, where rj is the canonical line bundle. 

The following, on the other hand, is straightforward geometry. 

(2.4) PROPOSITION. For any integer j there is a map 

1 / / T T 4 * " " 1 ' » ^ T r 4 f c - 1 » n \ Z , ^ 4 * - 1 » " « , ^ 4 * - 1 » W X 

h': (Vq ,dVq ) - > ( M , dM ) 
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of degree q+2j such that the Poincarê dual of [Vf'hn
% dV?~l'n\ h'] is 

K+j-s«e^(Pn). 
3. The Brieskorn normal invariants. In [4] we pointed out how the 

Brieskorn examples Qh+i produce smooth normal invariants of Pn. 
Here we show how these examples lead to elements of [Pn, SG/Spin] 
compatible with the machinery of the previous section. 

As remarked in [4], each QM%\ is homotopy equivalent to P4**1. 
Consequently the map 

/ / T r4*+3.4*+l 4*+8,4*+L 4*+3.4*+l 4A+3.4fc+l. 

A«+i: (V2d+i , dVta+x )-+(M ,dM ) 
of degree + 1 provided by (2.4) is a homotopy equivalence of Spin 
manifolds. Now the construction of [6] produces in our case a "classi­
fying" SG/Spin-bundle over J|f4*+3'4*+1~P4*+1 for ft2<m, i.e. an ele­
ment a g î î e t P ^ 1 , SG/Spin]. Restriction to pnçp4*+i defines the 
element o^+1 G [P», SG/Spin]. 

Now we follow the description of [Pn, /*] as given in §1. We find 
that a£j+1 leads to the element i^+i— d-snEtilpm(Pn) which by (2.2) 
and (2.3) is sent (under £0-orientation) to the element l + d - £ 
£&0°(Pn), where £ = 1 — rç. This gives our main result on the Brieskorn 
examples. 

(3.1) THEOREM. Under kO-orientation we have 

[P^K^d+O - l + d-i 

as a virtual line bundle over Pn . 

Numerous results follow from (3.1), in particular the following 
which stems from (1.3). 

(3.2) THEOREM. The natural maps 

[P», A*]: [P», SG/Spin] -> [P», B0]} 

[P*,v\: [P»,G/0]->[P»,BSO], 

are epimorphisms of groups (where BO and BSO have their tensor 
product structures). 

Results of Browder [3] can be applied to show that the epimor­
phisms in (3.2) are canonically split—in fact, that [Pn, v] classifies 
the Brieskorn examples of smooth normal invariants for Pn . Simi­
larly, [Ptt, /x] classifies the Brieskorn elements a^+i G[P n , SG/Spin]. 
Browder's results alone do not give this except for w^S. 

4. Numerical results. By results of Adams [ l ] , W°(Pn) = KO(Pn) 
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is the commutative ring generated by 1 and { = 1—17 subject to the 
relations £* = 2 • £ and an+i • £ = 0, where a* is given by the table : 

k 

at 

1 2 3 4 5 6 7 8-
1 2 4 4 8 8 8 8-

••y+8 
• • 16oy 

Now it is clear that the multiplicative group of virtual line bundles 
l+d-££[.Pn , BO] is isomorphic to Z2XZ0n+1/2. Moreover, the two 
generators 1— £=77 and 1—2-£ = 2-rç — 1 of [Pw, BO] generate the Z2 

and Zo^/2 factors corresponding to [Pn, P00] and [Pn, 550 ] , respec­
tively—as indicated in the following diagram: 

[P»,P»]*± [P»,BO] +±[P»,BS0] 

\\l \\l \\l 
Z% *=± Z 2 X ^On+i/2 ?=* ^an + l / î 

(4.1) THEOREM. Pfê r̂  ar# an+i/2 distinct Brieskorn smooth normal 
invariants of P n . 

(4.2) COROLLARY. There are a*k+i/2 = 22* smoothly distinct Brieskorn 
homotopy projective (4k+ 1)-spaces. For k>0, these yield only 4 combi-
natorially distinct homotopy projective (4k+ 1)-spaces. 

(4.3) COROLLARY. For w ^ l mod 4 and w>5, /feer£ are an+i/4 
smoothly distinct homotopy projective n-spaces which yield only 2 combi-
natorially distinct homotopy projective n-spaces. 
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