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The purpose of this note is to present a new proof of the following 
theorem of Leavitt. 

THEOREM 1. Let K be a commutative ring {with 1), and a a positive 
integer. Then there exists a K-algebra R such that, for positive integers 
m, n, 

Rm = Rn if and only if m=n (mod q). 

(Rm denotes the free right i?-module on m generators.) 
We remark at the outset that as in any case K admits a homo-

morphism onto a field, an obvious change-of-ring argument shows 
that it is enough to prove that the theorem is valid in the case where 
K is itself a field. 

Three proofs have already been published, by Leavitt [5], by 
myself [2], and by Cohn [ l ] . All three take R to be the J£-algebra 
which is in a fairly obvious sense universal for the isomorphism 
Rq+l=Rl. To complete the proof, Leavitt shows that Rm=Rn only 
if m^n (mod q) by means of a long and involved cancellation argu­
ment. As he is interested in rings rather than algebras he presents his 
proof for the case where K is the field of 2 elements; but it should be 
remarked that with a little patience his argument can be adapted to 
the case where K is an arbitrary field. The remaining two proofs, 
which are considerably shorter and simpler, avoid the cancellation 
argument with the help of suitable 'trace functions/ but they have the 
disadvantage that they fail completely unless the identity element of 
K/qK has additive order exactly q. 

The present proof has none of the disadvantages of the earlier 
proofs. Tackling the problem from an entirely new angle—it makes 
no use of the universal algebra already mentioned—it employs a quite 
trivial manipulation of infinite matrices to deduce the theorem from 
the familiar invariance of dimension of finite-dimensional vector 
spaces: the underlying idea is strikingly similar to that exploited by 
Hanf in his solution of an analogous problem for Boolean algebras 
M-

1 This paper was written while the author was on sabbatical leave at Vanderbilt 
University, supported in part by NSF Grant GP 8725. 
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Although it would be possible to present the proof in the manner 
of a nineteenth-century text on Matrix Theory, it is notationally 
more convenient to obtain the theorem as a consequence of an em­
bedding theorem for additive categories. For this we need a few ad hoc 
definitions. Let K be a commutative ring, and let 6 be a K-category, 
by which we mean an additive category such that, for objects A, B, 
Ct the groups of morphisms e[-4, -B], • • • are i£-modules and multi­
plication e[A, B] X e [ 5 , C ] - > e U , C] is bilinear; note that e[A, A] 
is then always a 2£-algebra. An object A(j*0) of 6 will be called 
principal if the minimal sub-i£-algebra K-1A of &[A, A] is a princi­
pal-ideal domain (or field) ; a nonzero morphism of 6 will be called 
principal if it belongs to K• \A for some principal object A. 

THEOREM 2. Let K be a commutative ring, and let Q be a K-category 
with finite direct sums. Then <B may be embedded as a full subcategory of 
a K-category (3* with finite direct sums which contains, for each principal 
object U of 6, an object U* such that 

(i) U*^U®U*^U*®U*, 
(ii) for objects A, B of C, 

A ® U* S B ® U* (in 6*) 

if and only if there exist nonnegative integers r, s such that 

A ® Ur^B ® U' (in 6). 

To see that Theorem 1 follows from Theorem 2, let K be an arbi­
trary field or, more generally, a principal-ideal domain, and take 6 
to be the X-category of all free X-modules of finite rank. Given a 
positive integer q, let U = K«, A = KX® U*t R = Q*[A, A]; note that 
U is indeed principal, because K-lu — K. Now, in view of the stan­
dard matrix representations for homomorphisms between free right 
-R-modules and for morphisms between direct sums of copies of the 
object A, it is clear that, for positive integers m, n, the following three 
conditions are equivalent: 

(a) Rm^Rn; 
(b) there exist a n w X » matrix X and a n w X w matrix Y over R 

such t h a t X F = l , YX = 1; 
(c) Am^A\ 

But it follows at once from (i) that Am^Km®U*, An^Kn®U*. 
Therefore (ii) implies that (c) is equivalent to the existence of non-
negative integers r, s such that Km®Ur=Kn®U' or, equivalently, 
taking ranks, such that m+rq = n+sq. Visibly, a necessary and suffi­
cient condition for this is that ra=n (mod g), as required for the proof 
of Theorem 1. 
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PROOF OF THEOREM 2. For the objects of 6* we take all families 
A = (Ai)i(=r of objects of 6 with the property that Ai is principal for 
almost all i(EI. For objects A~(A »)te/, B = (B})iej of 6*, a morphism 
A—*B is to be a row-and-column-finite matrix X=(xij)ierjeJ with 
#«7G 6 [̂ 4,-, jBy], subject to the requirement that all but a finite number 
of the nonzero entries Xy be principal. A straightforward verification 
shows that C* is a if-category under the usual rules for operating 
with matrices, the identity morphism 1A of A being, of course, the 
matrix with the identity morphisms of the Ai in the appropriate posi­
tions along the diagonal and zeros elsewhere. Clearly 6 may be iden­
tified with the full subcategory of 6* whose objects are indexed by the 
one-element set {O}. I t is equally clear that two objects of 6* which 
differ only in their indexing sets are isomorphic. Therefore, in order 
to check that two objects A = C4,-)»ei» B = (By)ye/ of 6* have a direct 
sum in C*, we may assume that IC\J= 0 . Take C= (Ck)keivj, where 
Ci = Ai(iEI), Cj^BtfEJ), and let X and Y [P and Q] be the ma­
trices obtained from lc by retaining only the rows [columns] indexed 
by the elements of / and J , respectively. Then C is an object and 
X, F, P , Q are morphisms of e*;and since 

we have proved that C is the direct sum of A and B in C* (see Mitchell 
[6, Proposition 1.18.1 J). 

Given a principal object U of C, take Z7* = (Z7i, £/2, • • • ), where 
Ui=U (i = l, 2, • • • ). I t follows at once from what we have just 
proved that U* satisfies (i) and the 'if' part of (ii) in the statement 
of Theorem 2. For the 'only if' part of (ii), let A% B be objects of 6 
such that 

A - (4o, AU---)~A®U*£*BQU*- (Ufl Bu • • • ) - 5 , 

where A0 = Ay B0 = B, Ai = Bi= U (i = l, 2, • • • ), and choose inverse 
isomorphisms X: A-+B, Y: ~B—*A, so that 

(1) XY = l j , FX - ly. 

By hypothesis, only a finite number of the nonzero entries of X and 
F fail to lie in K • 1#; so we may choose a positive integer / such that 
these exceptional entries all lie in the first / columns of X and the 
first / rows of F. Since X and F are row-and-column-finite, we may 
further choose positive integers m, n such that the nonzero entries of 
the first / columns of X [rows of Y] lie in the first m rows of X 
[columns of F ] , and the nonzero entries in the first m rows of X 
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[columns of F] lie in the first l+n columns of X [rows of F ] . In this 
way we obtain block decompositions 

(2) 

(0 

x„ 
X% Xz 

w (») 
°1 
xj 

(«) 
"F0 0 " 
Yx F2 

.0 Fs_ 
(m) (00) 

(0 
(») 

(» ) 

where the bordering parentheses indicate the numbers of rows and 
columns in the blocks. From (1) and (2) we may read off the equations 

Y1X1 + F2X2 = 1, 

X 2 Fi = 0, XXF2 = 0 , 

from which it follows easily that 

(3) XvY1X1^Xll 

(4) X 2 -F 1 X 1 = 0, 

Y1X1-Y1= Ft, 

Y1XVY2 = 0. 

By (3), the nXn matrix Y\X\ is clearly idempotent, and our choice of 
/ guarantees that its entries all lie in the principal-ideal domain 
K-lu't so there exists an invertible nXn matrix S over K*lu such 
that, for some nonnegative integer r<n> 

(5) ^r,.xtf-[' o]«_r). 
Introducing the automorphism 

r = 
1 

1. 

(0 
(») 
( 0 0 ) 

of i?, we now replace X, F by the inverse isomorphisms XT, rP~lY. 
The effect of this is to replace Xu Xt, Yly F2 by XiS, X2S, S ' 1 Fi, 
5 _ 1 F2, respectively, and to leave the remaining blocks in the decom­
positions (2) unchanged. With the new X and F, (5) takes on the 
simpler form 

(6) 
L 0 J (» - r) 

Substitution from (6) in (3) and (4) reveals that the last n — r columns 
of Xi [rows of Fi] and the first r columns of X2 [rows of F2] all 
vanish, so that by decomposing the central blocks of (2) in the obvi­
ous way we obtain finer block decompositions of the form 
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To 
Yi 

YI 

F3 . 

(m) (oo) 

But then it follows from (1) that the submatrices 

[XoX1']and[^°/] 

are inverse isomorphisms between (AQ, • • • , Am-i) =A@ Um~1 and 
(1*0, • • • , .Bj+n-i) = B@ Ul+n~l. The proof of Theorem 2 is complete. 

We remark in conclusion that it is not difficult to extend the fore­
going argument and show that a necessary and sufficient condition for 
two objects A == (Ai)iei, B = (Bj)jGJ of Q* to be isomorphic is that there 
exist finite subsets IoQI, JoQJ> and a bijection ƒ: 7\2o —>J\Jo such 
that ®ieiAi=®3^JQ

Bi i™ e ) and Ai = Bf(i)(i^I\I0); we leave the 
details of the proof to the reader. 

For an application of Theorem 1 to primary abelian groups, see [3]. 
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