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1. Introduction. Let I b e a Banach space, and let B(X) denote 
the space of bounded linear operators on X. An operator A (EB(X) is 
called a Fredholm operator if 

1. a(-4), the dimension of the null space N(A) of A, is finite; 
2. the range R(A) of A is closed in X; 
3. P(A) the codimension of R(A), is finite. 
The set of Fredholm operators on X is denoted by $(X). An oper­

ator EÇzB(X) is called a Riesz operator if E-~\&$(X) for all scalars 
XT^O. For further discussion of such operators we refer to [l, p. 323], 
[2], [3], [4], [5], [9]. 

An operator EÇ~B(X) is called a Fredholm perturbation if A+E 
Çz$(X) for all A G$(X). In this paper we investigate the connection 
between Riesz operators and Fredholm perturbations. Our work com­
plements the results of [2], [3] and [6]. 

2. Riesz operators. Let R(X) denote the set of Riesz operators 
o n l , 

LEMMA 1. EE:R(X) if and only if I+\EE$(X) for all scalars X. 

PROOF. If E(ER(X)t the statement is true for X = 0. Otherwise 
E+I/\&(X). Hence I+\E&$(X). Conversely, if ju^O, then 
tx(I+E//x)&(X) showing that E+fxE$(X). 

The set K(X) of compact operators on X is a closed, two-sided ideal 
in B{X). Let TT be the natural quotient map of B(X) into B(X)/K(X). 

LEMMA 2 [7], A(E$(X) if and only if ir(A) is invertible in 
B(X)/K(X). 

LEMMA 3 [9], [ l ] . EER(X)*=*\\T(E)n\\lin->0 as n-»oo. 

For any two operators A, B^B{X) we shall write A[)VB when 
AB — BA is a compact operator on X. The reason for the notation is 
that ir(AB) —TT(BA) in this case. Such operators are said to "almost 
commute." 

LEMMA 4. If EER(X) and KEK(X), then E+KGR(X). 

PROOF. TT(E+K~\) =T(E-X). 

1139 



1140 MARTIN SCHECHTER [November 

LEMMA 5. If EER(X), BEB(X) and B\JTE, then EB and BE are 
in R(X). 

PROOF. {^(EB)^1'» = ||«-(5)«r(JS)"[| 1'». 

g || TT(B) II || *•(£)» II 1/n->0 as w->°o . 

LEMMA 6 [8]. If A E$(X), then there is a Â E$(X), such that 

(1) ir(ÀA) = *(AÂ) = 7 T ( 7 ) . 

LEMMA 7. IfEER(X), A &(X) and AUrE, then Â+EEMX). 

PROOF. ir[A(E+Â)]=ir[(E+Â)A]=w(EA+I). Since EAER(X) 
(Lemma 5), £.4 + / i s* (X) and w(EA +1) is invertible in B(X)/K(X). 
Hence the same is true of ir(E+Â), showing that E+ÂE$(X). 

LEMMA 8. If A E$(X), EER(X), and A{JTE, then A\ixE. 

PROOF. TT(XE) =T(ÂEAÂ) =T(ÂAEÂ) =T(EÂ). 

THEOREM 9. If AE$(X), EER(X) and AUTE, then A+EE${X)-

PROOF. ÂE$(X) and A(JrE (Lemmas 6 and 8). Thus 4 + £ £ * ( * ) 
(Lemma 7). 

LEMMA 10. Suppose A&{X) and EEB(X). Then *E+AE$(X) 
for aWKifand only ifEÂERÇX). 

PROOF. If \E+AE$, then T[ÇKE+A)Â]=T[Â(KE+A)] 
=TT[\EÂ+I] is invertible in B{X)/K(X). Hence EÂER(X). Con­
versely, if E A ER(X), then ir(XiLl+i') is invertible for each X. Hence 
so is ir(KE+A). 

LEMMA 11. Suppose AE$(X) and EEB{X). Then EAER(X) if 
and only if AEER(X). 

PROOF. If EAER(X), then \EA+IE$(X) for all X. Hence so is 
\E+ A and consequently so is \AE+I. Therefore AEER(X). 

THEOREM 12. The operator E EB(X) is in R(X) if and only ifA+E 
E${X)for all A E®{X) such thatA\J*E. 

PROOF. By Theorem 9 we need only show the "if" part. To do this 
we merely take A =X?*0. 

THEOREM 13. IfEu E2ER(X) andE^J^, thenEi+E2ER{X). 

PROOF. If X^O, X + £ I G * P 0 . By Theorem 9 so is X +Et+E2. Thus 
E1+EiER(X). 
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3. Fredholm perturbations. Let F(X) denote the set of those 
EEB(X) such that AE&R(X) for all A E$(X). We now characterize 
this set. 

LEMMA 14. EEF(X) if and only if I+AEE$(X) for all A &(X). 

PROOF. Use Lemma 1. 

THEOREM IS. EEF(X) if and only if A+EE$(X)for all A &(X). 
Thus F(X) coincides with the set of Fredholm perturbations. 

PROOF. If EEF(X) and A&(X), then AEER(X) (Lemma 6). 
Thus I+ÂEEHX) (Lemma 1). Thus A(I+ÂE)E$(X) showing 
that 7r(̂ 4 +E) is invertible. Hence A +EE$(X). Conversely, suppose 
A +EE$(X) for all A E$(X). Let A be a particular operator in i (X) . 
Then \Â +E E®(X) for all X 5*0. Hence the same is true for A (Xi +E). 
This shows that T(K+AE) is invertible for each X?*0. Hence AE 
ER(X). Since this is true for all 4 G $ ( I ) , we have EEF(X). 

COROLLARY 16. If Elf E2EF(X), then EX+E2EF{X). 

LEMMA 17. For each BEB(X)t there are operators Au A2 in $(X) 
such that B=Ai +A2. 

PROOF. For X sufficiently large, A1=\I+B is in $(X) (cf., e.g., 
[4], [8]).Take^2=~XJ. 

COROLLARY 18. IfEEF(X), thenBEEF(X)forallBEB(X). 

PROOF. By Lemma 17, B-Ai+A2l where AjE$(X). If A is any 
operator in &(X), then AAjE&R(X). Thus AjEEF(X). Hence 
BE = AiE+A2EEF(X) (Corollary 16). 

COROLLARY 19. If EEF(X), then EA ER(X) for all A &{X). 

PROOF. Lemma 11. 

COROLLARY 20. If EEF(X), then EBEF(X)for all BEB(X). 

PROOF. See the proof of Corollary 18. 

COROLLARY 21. If EnEF(X) and En-+E in B(X), then EEF(X). 

PROOF. If A E$(X), we can take n so large that A — (En—E) E®(X) 
(cf., e.g., [4]). Hence A-(En-E)+EnE$(X) (Theorem IS). This 
shows that E E F(X). 

COROLLARY 22. F(X) is a closed two-sided ideal. 

PROOF. Corollaries 18, 20, 21. 
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4. Semi-Fredholm operators. Let $+(X) denote the set of opera­
tors AGB{X) such that a(A) < <*> and R(A) is closed in X. Clearly 
$+(X) contains $(X). 

THEOREM 23. A is in &+(X) if and only if ct(A —K) < <*> for all 
KEK(X). 

PROOF. If A&+(X) and KGK(X)f then A-KG$+(X) (cf. [8], 
[4]). In particular, a(A— K)<<x>. Conversely, suppose A is not in 
$+(X). Then there are sequences {xk}QX, { ^ } ç i ' such that 
||**|| = 1, I k ; || ^ 2 * - 1 , xj (**)-«/*, \\Axk\\ S 2 1 - » (cf. [6]). Set 

Knx = ]T) %£ (x)Axk, n = 1, 2, • • • . 
1 

Then for n>m 

Hoc-20*11 ût,2^2^»\\4, 

showing that ||2£n—i£m||—>0 as tn, w—»°o. Thus Kn—>K, where 

00 

Kx = 22 x£ (x)Axk. 
1 

Now Kx — Ax for x equal to any of the Xk and hence also for any linear 
combination. Since the Xk are linearly independent, it follows that 
a (A —K) = 00. This completes the proof. 

COROLLARY 24. A G$(X) if and only ifa(A —K) < 00 and (3(A —K) 
< 00 for all KEK(X). 

PROOF. The "only if" part is well known (cf., e.g., [4]). To prove 
the "if" part, note that Theorem 23 implies that AG$+(X). Since 
0GK(X), 0 (4 ) =/3(A-0)< 00. Thus AG*(*). 

Let F+(X) denote the set of all EGB(X) such that A+EE$+(X) 
ïoraüAE$+(X). 

COROLLARY 25. If Ex, E2GF+(X), then E!+E2GF+(X). 

THEOREM 26.EEF+ÇX) if and onlyifa(A - £ ) < 00 for all A G$+(X). 

PROOF. If EEF+(X) andAE®+(X), then A-EE$+(X) by defi­
nition. Hence a(A —E) < <*>. If A E$+(X) and A — E is not in $+(-X"), 
then there is a i££.K:(X) such that a(A -E-K) = 00 (Theorem 23). 
Set C = A-K. Then CG$+(X) and a ( C - J E ) = » . This proves the 
theorem. 



i968] RIESZ OPERATORS AND FREDHOLM PERTURBATIONS 1143 

THEOREM 27. EEF(X) if and only ifa(A - £ ) < <*> for all A £$(X). 

PROOF. If EGF(X) and 4 € * ( * ) , then A-E&{X) (Theorem 
15). Thus a(A —E) < <*>. Conversely, suppose a(A —E) < oo for 
all 4 G $ ( J ) . Let A be any particular operator in $(X). Then 
(A -K)/\&(X) for each KGK(X) and X^O. Hence a(A -\E-K) 
< oo for all X and all KGK(X). By Theorem 23, il - X E G * + ( X ) for 
each X. In particular, this is true for 0 < X ^ 1. Now if P(A--E) were 
infinite, it would follow that /3(A) = oo [4, Theorem 7.1]. But this is 
contrary to assumption. Hence A— EÇ£$(X). Since this is true for 
any A G$(X) , the proof is complete. 

COROLLARY 28. F+(X)QF(X). 

LEMMA 29. If EnEF+(X) and En-+E, then EEF+(X). 

PROOF. See Corollary 21. 

LEMMA 30. If EEF+(X), then AE and EA are in F+(X) for all 
A&(X). 

PROOF. If A&(X) and CG*+(X), then E+ÂCE$+(X). Thus 
A(E + ÂC) and consequently AE + C are also in $+(X). This means 
that AEÇzF+(X). A similar argument holds for EA. 

LEMMA 31. If E£F+(X), then BE and EB are in F+(X) for all 
BEB(X). 

PROOF. See Corollary 18. 

COROLLARY 32. F+{X) is a closed, two-sided ideal. 

PROOF. Lemmas 29 and 31. 

5. Remarks. R{X) is not an ideal [3]. We see from Corollary 22 
that F(X) is the largest ideal contained in R(X). Moreover, operators 
in R(X) are characterized by the fact that each of them behaves like 
a Fredholm perturbation with respect to Fredholm operators which 
almost commute with it (Theorem 12). 

Theorem 23 says that an operator in $+(X) cannot coincide with a 
compact operator on any infinite dimensional subspace, and that this 
property characterizes these operators. Theorem 26 says that an 
operator is in F+(X) if and only if it does not coincide with a $+(X) 
operator on any infinite dimensional subspace. Theorem 27 makes a 
similar statement for F(X). 
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The following question was posed by Springer [2 ] : is the centralizer 
Gx of a regular unipotent element x in a semisimple algebraic group G 
abelian? In this paper we shall give an affirmative answer and also 
find the number of disjoint components of Gx if it is reducible. The 
problem is easily reduced to the case in which G is simple, which we 
henceforth assume. As proved by Springer in [2], reducibility occurs 
only when the type of G and the characteristic p of the base field $ 
are related as follows: Cn (n^2) and Dn (n^A) with p = 2 (here Bn is 
a homomorphic image of Cn and need not be considered); F4, G2, 
E6, E7y with p = 2, 3 and E8 with p = 2, 3, 5. 

We shall now sketch our development. We recall that an element 
x of G is regular if its centralizer Gx has dimension equal to the rank, 
say r, of G, and that an element is unipotent if its eigenvalues are all 
1. Relative to a Cartan decomposition of G let U be the maximal 

1 The results are part of the author's Ph.D. thesis at the University of California at 
Los Angeles. The author wishes to thank Professor Robert Steinberg for his patient 
guidance during the preparation of this work. 


