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In this note we announce results, obtained in the framework of 
Brelot's axiomatic potential theory, which are applicable to the 
Wiener and Royden boundary theories for Riemann surfaces.2 Recall 
that in Brelot's theory, we consider a sheaf 5C of real-valued functions 
with open domains contained in a locally compact, noncompact, con­
nected and locally connected Hausdorff space W, with the functions 
satisfying certain axioms. Specifically, by a harmonic class of func­
tions on W we mean a class 3C of real-valued continuous functions 
with open domains. For each open 12 C W, JCQ denotes the set of func­
tions in 3C with domains equal to 12; it is assumed that 5CQ is a real 
vector space. The three axioms of Brelot which 3C is assumed to 
satisfy are (1) a function is in 3C if and only if it is locally in 3C; 
(2) there is a base for the topology of W which consists of regions 
regular for 3C, i.e. connected open sets œ such that any continuous 
function ƒ on do) has a unique continuous extension in 3CW which is 
nonnegative if ƒ is nonnegative; (3) the upper envelope of any in­
creasing sequence of functions in 3Cn where 0 is a region (i.e. open and 
connected) is either +oo or an element of 3Cn. 

Let 3C~ and 3C_ denote the classes of functions which are super-
harmonic and subharmonic with respect to 3C; let 3C~~6 denote the 
subclass of 3C~ consisting of functions bounded below. We assume 
as another axiom: (4) l£3Cjp. 

1. Let W be a Hausdorff space in which W is imbedded as a dense 
(and therefore open) subspace, and henceforth let us agree that 12 
will mean the closure of 12 in W and dî2 = 12 —12. If 12 is an open subset 
of W, we shall say that 312 is associated with 3CQ& if every fl£3Ca& 

whose limit inferior is nonnegative at every point of 512 is necessarily 
nonnegative on 12. Throughout this note, we shall denote limXGQta5-»»0 ƒ(*) 
by lima/(x0); similar notation is used for lim inf and lim sup. 

THEOREM 1.1. If 12 is an open subset of W and dW is associated with 
3Cjp&, then 512 is associated with 3CQ&. 

1 The first author was supported by National Science Foundation research grants 
GP-5279 and GP-4653; the second author by GP-4563. 

2 These results will appear with proofs as part of a forthcoming article in the 
Annales de l'Institut Fourier. 
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Assume that d W is associated with 3Cjp&; then given a bounded real-
valued function ƒ on <9£2 (where £2 is an open subset of W) one can 
define H~(f, £2)£3C to be the lower envelope of the set {vE;3Q,Qb: 
lim infa v(x) ^f(x) for all x£d£2} and dually define H-(f, £2) 
= — H~(-~ƒ, £2). #" (ƒ , £2) and # - (ƒ , O) are respectively the upper-
and lower-3Q,-extensions of ƒ in £2. If they are equal, we say that ƒ is 
resolutive on d£2. A point #o£d£2 for which lim sup H~(f9 £2)(xo) 
^ l im sup f(xo) for every bounded function ƒ on 5£2 is said to be regular 
(with respect to 5C). Given x0£:d£2, a positive function bÇiZCr defined 
in the intersection of £2 with an open neighborhood of x0 and for which 
lima b(xQ) = 0 is called an 3C-barrier (or simply a barrier) for £2 a£ x0. 
We say that there is a system of barriers for £2 (or, for emphasis, £2) 
at Xo if there is a base 0 for the neighborhood system of Xo such that 
on the intersection of £2 with co£0 there is defined a barrier b for £2 
at Xo with 

inf {lim inf0 ô(*i) • *i G d(w O £2) - (co Pi d£2)} > 0. 

Such a barrier is said to belong to £2 and co. An 3C_-unit-barrier for £2 at 
Xo is a function &i(E3C_, defined on the intersection of £2 with a neigh­
borhood of #o and such that limn bi(xo) — l. With these definitions, 
we have 

THEOREM 1.2. Let x0 be a point of <9£2. Assume there is a system of 
barriers and an ?&--unit-barrier for £2 at x0. Then Xo is a regular point 
for SI. 

2. Let 3C be a harmonic class which is hyperbolic on W [5, p. 189], 
and let (B3(V denote the set of all bounded 3C-harmonic functions on 
W. Then (B&V is a Banach lattice with order unit H(W), where 
H(W) is the greatest 3C-harmonic minorant of 1. The lattice opera­
tion V#c is given by defining ƒ V^g to be the least 3C-harmonic ma­
jorant of the pointwise supremum f\/g, and Ajc is similarly defined. 

We next consider ideal boundary theory for an arbitrary Banach 
sublattice § of (BJCTT when H(W)(E&- Some examples of such sublat-
tices are: 

(1) (BOCTT itself. 
(2) The uniform closure of the space (B3XKV, where (B3D3(V is the 

set of all bounded harmonic functions (in the usual sense) with finite 
Dirichlet integral on an open Riemann surface W. 

(3) The uniform closure of the space of all bounded C2-functions 
ƒ on an open Riemann surface PFsuch that : 

(a) A / = P / where P is a nonnegative density on W with JfwP < °° i 
and 
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(b) •£>(ƒ,ƒ) +ffwPf2 < °° where £>(ƒ,ƒ) is the Dirichlet integral of/. 
Let a Banach sublattice § of (BXJF containing the order unit, 

H(W), be given. Now form the Q-compactification [2, pp. 96-97] 
and [ô] W% of Wwith (? = .£>; this is a compact Hausdorff space con­
taining W as a dense subspace, determined up to homeomorphism 
by the properties that each ƒ £ § has a continuous extension to W% 
and that the family of all these extensions separates the points of 
Az = Wl-W. Define 

r$ = {t e A$:H(w)(t) = 1} n n {* e **:(fhxg)(t) = a A *)(*)} 

and let F # = W\JT$. Then 

THEOREM 2.1. r # is associated with 3C^&, whence T$ is nonempty. 

THEOREM 2.2. If M"CA# is a closed set which is associated with 3CJp&, 
then the restriction map ƒ—>ƒ | M* of $ into (BR(M) is an isometry (not 
necessarily onto) preserving positivity in both directions. 

Now by the lattice form of the Stone-Weierstrass theorem we have 

THEOREM 2.3. The restriction mapping f~*f\Y§ of § into Cj?(r$) is a 
surjective isometry sending the order unit of $ to the order unit 1 of 
<2>R(T$) and preserving the lattice operations. 

THEOREM 2.4. r # is the intersection of all sets Tp~{tÇîà$: 
lim inf p(t) = 0 } as p ranges through the ^-potentials on W. No proper 
closed subset of T$ is associated with 5C^&. 

THEOREM 2.5. Except perhaps when § consists only of constant f unc­
tions, there is an 'ttl-runit barrier and a system of barriers for W% at 
each point of T#, whence each xÇY^is regular with respect to any open 
set ÛC Wfor which x£df lP \ r# . (Here dQ, is taken in W%.) 

THEOREM 2.6. Let |> denote those bounded functions in 5C^ for which 
the greatest ^-harmonic minorant is in $. For any vÇ:$t>,let I(v) be the 
function on T$ defined by I(v)(t)—lim inlw v(t) for each t(ET$. Then 
I(v) is continuous on T$for each vÇzfè, and the mapping I: |—><2>R(T$) 
is positively homogeneous and additive. 

If W is an open Riemann surface, 3C the class of harmonic func­
tions in the usual sense, and >̂ = <£3CTF, then T$ is homeomorphic to the 
harmonic part of the Wiener boundary even though A$ is "smaller" 
than the Wiener boundary. If $ is the uniform closure of (B3D3CTP, the 
bounded harmonic functions with finite Dirichlet integrals, then T$ 
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is the harmonic part of the Royden boundary and (B£>3Cpp is isometri-
cally isomorphic to a dense subset of CR(T$). 
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