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Here we shall present structure theorems for two types of com­
mutative locally compact rings with identity. The first is for rings 
satisfying a rather stringent topological condition, namely, that there 
exist an invertible, topologically nilpotent element. An analysis of 
such rings requires basic theorems of commutative algebra and, in 
particular, a decomposition theorem for total quotient rings of one-
dimensional Macaulay rings. One consequence of the structure theo­
rem is the determination of necessary and sufficient conditions for a 
locally compact ring with identity to be the topological direct product 
of topological algebras over indiscrete locally compact fields. 

The second is a theorem classifying all compatible metrizable 
locally compact topologies on a ring satisfying very stringent alge­
braic conditions, namely, that the ring be a special principal ideal ring 
in the sense of Zariski and Samuel [6, p. 245 ] of either zero or prime 
characteristic. For this investigation we require a theorem concerning 
finite-dimensional, locally compact, metrizable vector spaces over 
discrete fields, which shows that, in a certain sense, such spaces are 
not too remote from finite-dimensional vector spaces over indiscrete 
locally compact fields. 

1. Commutative locally compact rings having an invertible, topo­
logically nilpotent element. We recall that a local ring is a commuta­
tive ring with identity that has only one maximal ideal, and that the 
natural topology of a local noetherian ring is obtained by declaring 
the powers of its maximal ideal a fundamental system of neighbor­
hoods of zero. Moreover, a local noetherian ring is compact for its 
natural topology if and only if it is complete and its residue field is 
finite. If A is a compact ring that algebraically is a local noetherian 
ring, then the topology of A is its natural topology [4, Theorem 4] , 
We recall also that a one-dimensional local noetherian ring is a Ma­
caulay ring if and only if its maximal ideal is not an associated prime 
ideal of the zero ideal [7, p. 397]. 

Let B be a one-dimensional Macaulay ring topologized with its 
natural topology, and let m be its maximal ideal, pi, . . . , fy» the 
(isolated) prime ideals of the zero ideal. The complement of piU . . . 
VJpn is the set of cancellable elements of B. Let A be the total quotient 
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ring of B, topologized by declaring the neighborhoods of zero in B to 
be a fundamental system of neighborhoods of zero in A ; this topology 
we call the B-topology on A. To show that A is a topological ring, it 
suffices to show that x-*b~lx is continuous at zero for any cancellable 
b (EB ; this is accomplished by observing that m is the only prime ideal 
of Bb. Any element of m not belonging to piU . . . Up n is an inverti­
ble, topologically nilpotent element of A. 

We shall say that a local noetherian ring is aligned if the prime 
ideals, ordered by inclusion, form a chain. Thus a one-dimensional 
aligned local noetherian ring has precisely two proper prime ideals, 
one contained in the other. The decomposition theorem needed is the 
following: 

THEOREM 1. If A is the total quotient ring of a one-dimensional 
Macaulay ring B and if A is topologized by the B-topology, then A is 
the topological direct product of ideals A\, • • • , An, where each Ak is 
the total quotient ring of a one-dimensional aligned Macaulay ring Bk 

and is topologized by the Bk-topology. 

A semilocal ring is a commutative ring with identity that has only 
finitely many maximal ideals. A Cohen algebra is a local algebra over 
a field whose maximal ideal has codimension one. Our structure the­
orem for commutative locally compact rings having an invertible, 
topologically nilpotent element is the following: 

THEOREM 2. Let A be a commutative locally compact ring with iden­
tity. The following statements are equivalent: 

1°. A contains an invertible element that is topologically nilpotent. 
2°. A is semilocal, and none of its maximal ideals is open. 
3°. A is the topological direct product of a sequence (Ak)i^k^n of ideals 

where each Ak is either a locally compact finite-dimensional Cohen alge­
bra over the topological field of real or complex numbers or the topological 
quotient ring of a compact one-dimensional aligned Macaulay ring. 

OUTLINE OF PROOF. We first assume that A is totally disconnected 
and satisfies 1°. By a lemma of Kaplansky [3, Lemma S], A contains 
a compact open subring B that contains the identity element of A. 
By Kaplansky's characterization of compact semisimple rings [2, 
Theorem 16], the existence of an invertible, topologically nilpotent 
element implies that the radical R of B is open, so B/R is the car­
tesian product of finitely many finite fields. Raising idempotents 
from B/R to B and then using them to decompose A, we conclude 
that A is the topological direct product of ideals At, • • • , Am where 
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each Ai contains a compact, open, local subring Bi. Once again the 
hypothesis that Ai has an invertible topologically nilpotent element 
implies that all the powers of the radical of Bi are open, so by a the­
orem of Kaplansky [2, Theorem 20], Bi is a local noetherian ring. 
I t is easy to see, in fact» that Bi is a one-dimensional Macaulay ring 
and that Ai is the total quotient ring of Bi equipped with the Bi-
topology. An application of Theorem 1 to each Ai shows that 3° 
holds and, in particular, that the radical of A is nilpotent. The general 
case is now established by use of the Pontryagin-van Kampen the­
orem on commutative, locally compact, connected groups, the nil-
potence of the radical in the totally disconnected case, and the fact, 
proved by using standard theorems concerning finite-dimensional 
topological vector spaces over locally compact fields, that a locally 
compact local ring whose maximal ideal is nilpotent but not open is 
either connected or totally disconnected [5, Lemma 7]. 

THEOREM 3. Let A be a commutative locally compact ring with iden­
tity. The following statements are equivalent: 

1°. A contains an invertible element that is topologically nilpotent, 
and the additive order of each element of A is either infinite or a square-
free integer. 

2°. A is semilocaly none of its maximal ideals is open, and the addi­
tive order of each element of A is either infinite or a square-free integer. 

3°. A is the topological direct product of topological algebras over 
indiscrete locally compact fields. 

4°. A is the topological direct product of finitely many finite-dimen­
sional Cohen algebras over indiscrete locally compact fields. 

OUTLINE OF PROOF. T O show that 1° implies 4°, it suffices by The­
orem 2 to consider the case where A is the total quotient ring of a 
one-dimensional aligned compact Macaulay ring B, equipped with 
the .B-topology. Then A is local, and its maximal ideal m is closed, 
not open, and nilpotent. Consequently, A and A/m have the same 
characteristic. I t follows easily that A contains an indiscrete topologi­
cal subfield K that is the quotient field of a principal ideal domain D 
and that the open P-submodules of K form a fundamental system of 
neighborhoods of zero in K. We may therefore apply Correl's theorem 
[l, Theorem 3] to conclude that the completion of if is a locally com­
pact field. A modification of a proof of I. S. Cohen's theorem on 
complete equicharacteristic local rings [7, pp. 304-306] enables us to 
replace this field by a locally compact subfield that is canonically 
mapped onto A/m [5, Lemma 5]. 
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COROLLARY. Let A be a locally compact ring with identity. The fol­
lowing statements are equivalent: 

1°. The center of A contains an invertible element that is topologically 
nilpotenty and the additive order of each element of A is either infinite or 
a square-free integer. 

2°. A is the topological direct product of finitely many topological 
algebras over indiscrete locally compact fields. 

2. Locally compact metrizable special principal ideal rings. A 
special principal ideal ring [6, p. 245] is a principal ideal ring that 
has only one proper prime ideal, and that ideal is nilpotent. If A is 
a special principal ideal ring whose characteristic is either zero or a 
prime, then by I. S. Cohens theorem A is an algebra over a field K 
that has a basis 1, c,c2, . . . , c*"1, where c8 = 0. Suppose that K admits 
an indiscrete locally compact topology compatible with its field struc­
ture, and let r £ [0, 5 — 1 ]. Then Acr is the finite-dimensional subspace 
generated by cr, . . . , c8™1 and hence admits a unique topology mak­
ing it a Hausdorff vector space over K. We topologize A by declaring 
the neighborhoods of zero in Acr to be neighborhoods of zero in A. 
I t is not difficult to verify that A, so topologized, is a topological ring 
(though if r > 0 , A is a topological algebra over K only if K is given 
the discrete topology). This topology depends only on the topological 
field K and the numbers r and s, so we shall call it the (K, r, s)-
topology. To show that every compatible locally compact metrizable 
topology on A is a (K, r, s) -topology, we require the following the­
orem: 

THEOREM 4. Let E be a totally disconnected, finite-dimensional, 
locally compact, metrizable vector space [algebra] over a discrete field K, 
and let Z, = {# £ E : either x = 0 or Kx is indiscrete}. Then L is an open 
subspace [open ideal] of E, and L is the topological direct sum of sub-
spaces [ideals of E] E\, . . . , En, where f or each i £ [l, n], the locally 
compact group [ring] Ei admits the structure of finite-dimensional topo­
logical vector space [algebra] over an indiscrete locally compact field Fi 
under a scalar multiplication satisfying a.(fxx)=ix(a.x) [and also 
a.(xy)=*(a.x)y, a. (yx) =y(a.x)] for all aÇzFi, ju£i£, #££ , - [and 
y £ E ] . If N is any algebraic supplement of L, then N is discrete, and E 
is the topological direct sum of E\, . . . , En, N. 

Other than elementary facts, the proof depends only on the fol­
lowing three theorems: (1) The Baire Category Theorem (to show 
that if E is indiscrete, then K is uncountable); (2) There exist no 
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nonzero compact metrizable vector spaces over an uncountable dis­
crete field (a consequence of the theory of characters) ; (3) The Open 
Mapping Theorem for separable, metrizable, locally compact groups. 
An analogue of Theorem 4 also holds for connected, locally compact, 
metrizable vector spaces and algebras over discrete fields. 

THEOREM 5. Let A be an indiscrete, locally compact, metrizable, 
special principal ideal ring whose characteristic is either zero or a prime, 
and let m be the maximal ideal of A. The topology of A is then the 
(K, r, s)-topology, where K is an indiscrete locally compact field that 
algebraically is a subfield of A and is mapped canonically onto A/m, 
where r is the largest integer such that mr is open, and where s is the index 
of nilpotence of m. 

OUTLINE OF PROOF. From the existence of a coefficient field, The­
orem 4, and the fact that a field cannot admit both a connected and a 
totally disconnected locally compact topology compatible with its 
field structure, it follows that mr with its induced topology is a con­
nected or totally disconnected, metrizable, locally compact finite-
dimensional algebra over an indiscrete locally compact field F. Using 
again the special case of I. S. Cohen's theorem for equicharacteristic 
local rings having a nilpotent maximal ideal, we find a subfield Ko 
of A that is algebraically isomorphic to F and acts on mr as F does. 
Transferring the topology of F to K0 and applying [5, Lemma 5], 
we obtained the desired conclusion. 
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