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Before I embark upon my topic, perhaps a bit of orientation might 
be in order. The topic lies in a borderland between numerical analysis 
and pure mathematics. The problems arise out of very important 
practical computational difficulties; the results are due almost exclu­
sively to those who have rather more than a passing interest in com­
putation; they have been published largely in books and journals 
devoted to numerical analysis and applied mathematics; but the 
more elaborate developments go rather beyond anything that can 
promise any direct and immediate practical application. Here we 
enter what I think must be classified as pure mathematics. 

The phrase "numerical analysis" itself is a fairly recent coinage, 
dating back about twenty years to the advent of the electronic com­
puter. What it refers to is neither pure mathematics nor classical 
applied mathematics. I would say that classical applied mathematics 
is primarily descriptive, at least in intent, whereas numerical analysis 
is primarily prescriptive in intent. To the extent that it is descriptive, 
it describes, or attempts to describe, processes and their outcome, 
but in terms that permit a rational choice among possibly competing 
alternatives. I leave you to characterize pure mathematics as you 
like, but I think it differs, at least in intent, from either. I make these 
points only for purposes of orientation and not argumentation. 

My title is in two parts and is intended to indicate an intersection 
and not a union. A localization theorem for roots of a matrix is one 
that gives information concerning the location of the roots. There are 
two main classes, exclusion and inclusion. An inclusion theorem 
designates a set in the complex plane containing at least one root of a 
given matrix. An exclusion theorem designates a set containing none, 
so that its complement contains all. It is easy to see why such the­
orems would be of interest to numerical analysts. Any computation 
that does not employ exact arithmetic, and this means most, can 
produce only an approximation, at best, to the mathematically 
defined result. Naturally one is therefore interested in knowing the 
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limits of possible error, hence of knowing an inclusion set that con­
tains the mathematically defined result. I t is not farfetched to imagine 
that norms could be used to identify such inclusion sets. This is in 
fact the case, and my purpose is to show how norms have been used 
in particular to identify such sets for the roots of matrices. Not all 
localization theorems can be so obtained, or, at least, not all have 
been so obtained. But many have been, and I, with perhaps some 
bias, feel that these are the more interesting and more important ones. 

I t is easy to see why norms should be useful to the numerical an­
alyst. They provide the obvious tools for measuring rates of conver­
gence of sequences in w-space, and in the measurement of error. The 
rather surprising fact is that they seem not to have come into general 
use until the late 1950's, although they appear prominently in papers 
by Kantorovitch [24], Hotelling [14], and Lonseth [29] before 1950, 
and were reintroduced by Faddeeva [7] in 1950. But convergence 
questions are closely related to tests for the nonsingularity of a 
matrix, and again with questions concerning the location of the roots 
of a matrix. While I want to concentrate mainly on the third area, 
what I have to say has relevance also to each of the others. 

The connection between problems of the three classes is easy to see. 
One special convergence problem concerns the vanishing of a sequence 
of powers Bv of a given fixed matrix. I t is well known that this occurs 
if and only if all its roots lie within the unit disk. Hence any condition 
that assures that the roots lie within the unit disk is sufficient to 
assure the vanishing of the sequence B\ This also assures the non-
singularity of the matrix I—B. But a nonsingularity criterion applied 
to the matrix XJ—A immediately gives information about where the 
roots of A cannot lie. 

I t will be convenient to establish certain notational conventions 
once for all. Lower case Greek letters will generally represent scalars 
real or complex, and lower case Latin letters will represent column 
vectors, real or complex, barring obvious exceptions such as the use 
of i, j , k for indices, and of n for the dimensionality of the space. 
Capitals, whether Latin or Greek, will generally represent matrices, 
ordinarily square and of order n unless otherwise indicated. A row 
vector will be indicated by, say, aT (for simple transpose), or aH (for 
conjugate transpose). So far as possible corresponding letters will be 
used to represent elements of matrices or vectors. Thus 

A = (ai, a2, • • • , an) » (aq), 

but I will be used for the identity, e< for its ith column, and e=* ] F ^ . 
The notation A SB signifies that the matrices A and B axe both real 
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and that a^S^a ior every i and j , and similarly for a ^6 . When verti­
cal bars enclose a matrix or a vector, the elements are replaced by 
their moduli. Usually \(A) will represent a root of A, and 

p(A) = max | Xi(^4)|. 

I will often speak of vectors and points interchangeably. 
A seminorm is a function on w-space to the nonnegative reals 

satisfying 

(0 IM-lxINi , 
(JO H«+»llsMI+ll*l|. 
A seminorm is a norm if also 

(iii) ||a||=0--»a = 0. 

The reverse implication follows obviously from (i). Associated with 
any norm is a set [25], [17], [20] 

K- [*| IHI S I ] , 

which has the following properties 

(i') aEK, |co| él->o>aEK. 

This property is often called equilibration. 

(ii') K is convex. 
(iii') The origin is interior to K. 
(iv') K is bounded and closed. 

Conversely, given any set K possessing these four properties, a norm 
can be defined by 

||*|| = min [v| v â 0, * £ vK]. 

It is sometimes convenient to designate the norm by \\X\\K and to say 
that it belongs to K. Whenever reference is made to a convex body 
it will be assumed that it possesses the four properties listed above. 

Given any two convex bodies of this class, K% and K%t there exist 
Ki>0 and K2>0 such that 

Kx C K2K2, K2 C KiKx. 

In this sense all norms are equivalent. But in other respects they are 
by no means equivalent. The most commonly used norm is the ordi­
nary Euclidean, or 4, norm, which belongs to the unit sphere S: 

\\A\B ^ #*#• 

file:////A/b
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The /„o norm, defined by 

||*||* = max | &| , 

belongs to a kind of generalized hypercube E* Let 

[x] « M | » | g 1]. 
Then 

where the sum is the Minkowski sum, i.e., the set of all possible vec­
tors obtained by selecting a vector from each of the sets [ei[ and 
adding. The h norm, defined by 

N I - - S I fel-^1*1 
belongs to the convex hull E' of the union of the sets [$<].. 

Given any set K and any matrix P , define 

PK = [Pk\k G K]. 

If K is a convex body and P is nonsingular, then PK is a convex body. 
Also, clearly 

\\X\\PK~\\P-14K. 

Evidently PS is an ellipsoid, for any nonsingular P. If 

G = diag (71, 72, • • • , 7n), 7< > 0, 

and g — Ge, then 

|[*||G* = inf 01 | * | g vg], 

while 

IIHk"1^ - g r l*l-
Since a matrix is a vector in n2-space, matrix norms can be charac­

terized by the same set of properties, and associated with convex 
bodies in w2-space. But an additional property is desirable: 

(iv) |M*|| * Ml » 
Any matrix norm will be assumed to possess this property. A function 
defined on w2-space and possessing only the first three properties will 
be called a generalized matrix norm, and designated by the letter v. 
Thus 
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(0 v(KA) = \\\v(A), 
(ii) v(A+B)~r(A)+v(B), 
(iii) v{A) = 0->-4=0. 

But it can be shown [12] that for any generalized matrix norm *>, 
there exists a scalar K>0 such that the function defined by ||-4|| 
~KV(A) for all A satisfies (iv). The ordinary Euclidean matrix norm 
possesses all four properties. 

Given any matrix norm, and an arbitrary vector as^O, 

INI - IMI 
defines a vector norm which, by virtue of (iv) is related to the matrix 
norm by 

(O \\AX\\ =g \\A\\ |H|. 

When a matrix norm satisfies (C) with any vector norm, it is said to 
be consistent with the vector norm. The Euclidean matrix norm is 
consistent with the Euclidean vector norm. Given any generalized 
matrix norm and any vector norm, there exists a scalar K such that 
the function 

\\A\\=KV(A) 

is a matrix norm, and it is consistent with the given vector norm. 
All machinery has now been assembled for proving a quite general 

localization theorem. This is that 
P(A) £ | | i i | | , 

whatever the matrix A and whatever the matrix norm. The proof is 
quite trivial. In terms of any vector norm to which the matrix norm 
is consistent, if Ax=\x, then 

IM- lx l lNI -M^NI IHI-
Hence every root X»(-4) must satisfy 

Q.E.D. 
This theorem has a kind of converse as follows [17]: For any 

matrix A and for any €>0, there exists a matrix norm such that 

H4I s « + p(iO. 
Thus while the norm ||i4|| is never less than the spectral radius p(A) 
of a given matrix, special norms exist that come arbitrarily close to 
p(A) for that particular matrix. 
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Now let 

A - B + C, 

XI - A - \I - C - B - (X7 - Q [ J - (A/ - O""1*]-

Assuming X/—C to be nonsingular, the condition | | (X7—O" 1^! < 1 
is certainly sufficient to insure the nonsingularity of I—ÇkI—C)~lB; 
hence of \I—C—B. Hence the set 

[ X | | | ( X / - C ) - ^ | | < 1 ] 

is certainly an exclusion set, which is to say that if X satisfies the 
inequality it cannot be a root of A. 

Two special interpretations of this will be made, but this necessi­
tates the introduction of an important special class of matrix norms. 
Given any convex body K let 

lub* (il) -sup||il«|MIHU-
3 5*0 

I t is easy to see that this defines a matrix norm, and that the matrix 
norm is consistent with the vector norm. More than that, there exists 
a vector # ^ 0 such that 

(s) IMHU = IklUiub^c^). 

This particular matrix norm is said to be subordinate to the vector 
norm, and it is unique. Among all matrix norms that are consistent 
with a given vector norm, the subordinate norm is minimal, in the 
sense that 

lubx( i l ) £ | | i l | | 

for every A. On the other hand, given two convex bodies H and K% 

if for every matrix abH of rank 1 it is true that 

lub* (ab*) £ lub* (abH), 

then K = KH for some /c, and therefore 

lub* (A) « lub* (il) 

for every matrix A [28], [37]. 
Subordinate to the Euclidean (or spherical) norm is the so-called 

spectral norm, whose value is the largest singular value: 

lub* (il) - px"(i!*il). 
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Subordinate to the E norm is that whose value is the largest sum of 
the moduli of the elements in any row. Subordinate to the E' norm 
is the largest sum of the moduli of the elements in any column. 

To make the first interpretation, let 

||x|| - luMX) , 
and let C=D, the diagonal of A. Evidently 

lubjs (X) = max [v \ \ X \ e â ve\. 

Hence 

lubi* [Qd - D)~lB] < 1 

is equivalent to 

| (XI - Z>)-*B \e<e, 

or to 

| J 8 | « < | X 7 - D\e. 

This is to say that if | l5 |e=£, then for X to be root of A it must 
satisfy at least one of the inequalities 

This is the so-called Gershgorin theorem [13] published in 1931, 
although it had been published fifty years earlier by Levy [25] for 
the real case in a different but equivalent form and has been redis­
covered many times since [40]. It states that all roots of a given 
matrix lie in the union of a set of n disks whose centers are the 
diagonal elements of the matrix, and whose radii are the sums of the 
moduli of the off diagonal elements in the rows. 

For another interpretation [4], let 

||X|| - lubs (X) 

and let B and C be normal. Evidently 

lubs [(XJ - C)-lB] < 1 

is implied by 

lubs [QJ - C)-1] lubs (B) < 1. 

It is easily verified that if N is normal, then 

lubs (N) = P W . 
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Hence if 

7< = X,(C), 

any root X of A must satisfy at least one of the inequalities 

| A - Y * | £P(B). 

But if A=B + C, then also A = (B-ixI) + {C+ixI) where M is any 
scalar. Hence any root X must satisfy at least one of the inequalities 

| X - M - 7 < | ^ P ( 5 - M 7 ) . 

The interpretation is as follows: With any center JJI, draw a circle 
enclosing all roots of B. From this form n circles of equal radius by 
translating by 7* for each i. The union of all disks enclosed by these 
circles contains all roots of A. This theorem is due to Wielandt [41 ] . 
A corollary is the theorem of Bendixson which states that if B is 
Hermitian and C is skew Hermitian all roots of A are contained in 
the rectangle whose vertical sides pass through the extreme roots of 
B and whose horizontal sides pass through the extreme roots of C. 

When the matrix A is Hermitian a natural application of Wielandt's 
theorem is to the case in which B and C are also Hermitian and B is 
small. Thus bounds are obtained on the variations in the roots that 
result from small deviations in the elements. A generalization can be 
stated for the case that B and C are normalizable [4] but not neces­
sarily normal, but the resulting theorem is much less simple and 
involves quantities not ordinarily available in computational practice. 

An ordinary norm is a mapping of n space on the ordered set con­
sisting of all nonnegative real numbers. A vectorial norm [24], [34] 
is a mapping of n space on the partially ordered set consisting of all 
points in the positive orthant of some k space. The partial ordering 
is the obvious one. A particular example would be the one for k~n, 
where the vectorial norm of x is defined to be | x\. If p(x) represents a 
vectorial norm with elements 7i\(x), then each n(x) is at least a semi-
norm. For example, consider partitioning the entire space Cn into 
subspaces Cnv • • • , C»m, say. Any norm in Cn induces a certain norm 
in each subspace, and 7rt(x) can be taken equal to the norm induced 
in Cni» 

Let Pi , P2, • • • , Pm be orthogonal projectors such that 2 ^ ? , = / . 
Then any vector x can be resolved into mutually orthogonal com­
ponents 

%i = PiXy x « X) *i9 xi xi ^ 0 f or i ^ j , 



824 A. S. HOUSEHOLDER [September 

and any matrix A can be expressed as 

i = E E PiAPj. 

Let 

A{j = JriArj) 

and given any norm over the entire space Cn, define 

Also let 

v(Aij) = sup | | P ^ P ^ | | / | | P ^ | | 
PjX?£0 

p(Aii) = inf ||p<4P«*||/||p,*|| 
PiX^O 

These definitions are general, but for a fixed A let 

va = v(Aji), Pa = P(Au), 

and define the matrix 

'Pu —Pu 

M(A) = I —V21 P22 

This is of the form D—B, where D is a nonnegative diagonal and B is 
nonnegative. I t can also be written in the form /il— C, where C is 
nonnegative and J U > 0 . Such matrices have been much studied, and 
if, in particular, ix>p(C), then the matrix is called an M matrix 
(or, by some, a K matrix, after Koteljanski) and it is nonsingular. 
The theorem of interest here is that if M {A) is an M matrix, then A 
is nonsingular. When this result is applied to the matrix \I—A, there 
is obtained a natural generalization of the Gershgorin theorem, and, 
indeed, it is true generalization. The theorem itself comes from taking 
the projections to be on the coordinate axes and choosing the norm as 
before [3l] , [32], [lO], [ l l ] , [8]. 

I t seems that vectorial norms were first introduced by Kantorovich 
[24] in 1939 in a different connection. More recently they have been 
studied in some depth by Robert [34], [35], [36]. 

The theorems just discussed are based on a partitioning of the 
matrix A in some way. This amounts to forming A =D+B where D 
is block diagonal. I will only mention some recent and still unpub­
lished results of Joel Brenner [5] who forms D~lBy or, equivalently, 
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(X7—D)~lB. On applying the E-norm the result is a quite different 
generalization of the Gershgorin theorem. 

So far only exclusion theorems have been considered. To pass on to 
inclusion theorems and the associated inclusion sets, it turns out that 
for an important class the complement of any inclusion set is also an 
inclusion set. Hence the common boundary separates the complex 
plane into two sets that are disjoint except for the boundary, each set 
being an inclusion set. Often the common boundary can be excluded, 
sometimes not. In any event the common boundary is called a separa­
tion locus, and the associated theorem a separation theorem. 

The best known example of a separation theorem is that which 
states that for any Hermitian matrix, any Rayleigh quotient 
xHAx/xHx lies between the greatest and least of the roots. Hence it 
divides the real axis into two rays, each of which is an inclusion set. 
Moreover, the Rayleigh quotient itself can be removed from both 
rays unless it is one of the extreme roots. If A is normal the Rayleigh 
quotient lies in the convex hull of the roots, and this statement can 
be rephrased by saying that any line through a Rayleigh quotient is 
a separation locus. If the Rayleigh quotient is not itself a root, then 
the line itself can be removed from both half-planes. The correspond­
ing theorem when A is normalizable but not normal is rather more 
complicated and involves a quotient that is slightly different. This 
will not be given here. 

A quite general separation theorem will now be obtained for a 
normal matrix [3], [19], [20]. For a matrix that is only normalizable 
a slightly different norm is required but the proof is much the same 
[2 l ] . Suppose 

A = PAPH, PH = P~\ 

A = diag (Xi, X2, • • • , Xn). 

Let a(K) and j3(X) be any polynomials in X, and 

7(X) = a(X)//5(X). 

Then 

y(A) = Py(A)P*. 

With the Euclidian norm, for any z, 

\\y(A)z\\ - | |P7(A)P*«|| = ||7(A)y||f 

where y=PBz and ||y|| =|MI- Hence 

h(A)z\\ £ IHI min| 7(X«) | = ||>|| min| 7(X«) | . 
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This is true for any 2; hence, in particular, it holds if 

z = p(A)v, 

with v arbitrary. But then 

y(A)z = a(A) v; 

hence, for any v 

\\a{A)v\\ è||/8(ii)r||inin|.y(X<)|. 

Similarly, 

\\<x{A)v\\ g \\H{A)v\\ max|<y(X0|. 

The two inequalities together imply that the locus 

I «(X)//J(X) I - ||«(4)r||/||/J(4)*|| 

is a separation locus provided the right-hand side of the equation is 
defined. 

A mild amount of manipulation can be applied now to show from 
this that if, in particular, 

\/3(A)v]*[aU)v] = 0 

then for an arbitrary scalar 9/, 

Re [i/a(X)J9Ôôl « 0 

defines a separation locus, and the Rayleigh quotient theorem comes 
from taking /3 to be a constant and OJ(X) linear. In fact, given any 
polynomial in X and X: 

0(X, X) = 0o + *oiX + 0oiX + • • • , 

this will be called a separation polynomial in case 

vH6(A,AH)v = 0, 

since for any such polynomial 

Re n$(\, X) « 0 

defines a separation locus, where again vj is arbitrary. 
Returning to the general separation theorem, if j3(X) is constant 

and ce(X) linear, the locus is a circle, and it can be shown that the circle 
of smallest diameter is the one whose center is the Rayleigh quo­
tient. If 

vHv = 1, vHAv = JU, 
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then there is a t least one root in the circular disk 

| X - / * | £ \\p\\, p = Av- ixv. 

Now let P be any matrix of rSn orthonormal columns, let H be 
any matrix of order r, and define AP—PH = R. Let 

Hv =» rjVy vHv « 1. 

Then 

(A - riI)Pv « Rv. 

Since PBP = I, it follows that 

INI = 1Mb 
hence 

gib (A - til) £ lub (R). 

But rj is any root of H. Hence the disk of radius lub(i?) centered at 
any root of H is an inclusion set. This simple proof is due to Stewart 
[unpublished]. If the disks are all disjoint, then their union contains 
a t least r roots of A. Unfortunately, the union of two overlapping 
disks could contain only a single root, which would then lie in their 
intersection. A rather more complicated proof, however, due to Kahan 
[23], shows that this cannot be so when A is Hermitian. In that case 
each root of H can be paired off with a root of A in such a way that 
the distance between pairs is at most lub(i?). The question remains 
open when A is normal but not Hermitian. For obvious reasons the­
orems such as this are called multiple inclusion theorems. 

I t is readily verified that lub(i^) is minimized for given P by taking 
H~PHAP. This generalizes in a natural way the theorem that for a 
given vector v the minimal inclusion disk has its center at the Ray-
leigh quotient. 

Multiple inclusion theorems of a somewhat different sort can be 
obtained directly from the general separation theorem stated above. 
Two polynomials a(X) and /3(\) are said to be orthogonal with respect 
to the vector v in case [a(A)v]H\j3(A)v] = 0. For any vector fl^Olt is 
possible to define a set of mutually orthogonal polynomials <f>v(k), 
unique up to a normalizing factor. If A is Hermitian it can be shown 
that the zeros are all real, that the zeros of consecutive $'s separate 
each other, and that the segment joining any two zeros of a given <j>v 

contains at least one root of A [o]f [s], [20]. 
The general separation theorem for a normal matrix A can be ex* 

tended by use of a different norm to a normalizable matrix M [21 ], 
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but application requires that M be expressed in the form B~lA, 
where B is positive Hermitian and A is normal with respect to B. By 
this is meant that 

AHB-lA = AB-lA*. 

Such a decomposition is not easily made, but in important cases it is 
given in advance. Tha t is to say, the problem often arises in the form 
Ax~\Bx, where most commonly A is even Hermitian. 

Many techniques have been used to derive inclusion theorems. For 
Hermitian matrices it is possible to base them on the Rayleigh-
quotient theorem [19], but this has been seen to be a consequence of 
the general separation theorem. Again for Hermitian matrices, Leh-
mann [26] uses the minimax theorem to obtain multiple inclusion 
theorems. I t turns out that at least some of those can also be derived 
from the general separation theorem [22]. 

Among the exclusion theorems, however, while many of them can 
be derived from the theory of norms, there are a number of others that 
cannot, or at least not easily. But about these I will let others speak. 
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