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S. Kobayashi defined a pseudodistance d on a complex manifold in 
such a manner that it depends only on the complex structure of the 
complex manifold in question [7]. The definition of the pseudo-
distance can be extended word for word to a complex space (see [3] 
for definition of a complex space). Let D be the open unit disk in the 
complex plane C and p the Poincaré-Bergman metric of Z>. Given two 
points p and q of a complex space X, choose the following objects: 

(1) points p = po, pi, • • • , pk = q of X, and 
(2) points ai, • • • , ak, b\% • • • > bh of D and holomorphic mappings 

fit • • • » fk from D into X such that ƒ»•(#••) =£*-x and ƒ»•(&»•) =£»• for 
i = l, • • • , k. For each choice of points and mappings satisfying (1) 
and (2), consider the number p(ai, bi)+ • • • +p(a*, 6*). Let d(£, <?) 
be the infimum of the numbers obtained in this manner for all possible 
choices. 

I t is easy to verify that d is a pseudodistance on X. We shall call a 
complex space hyperbolic if the pseudodistance dx is a distance. The 
concept of a hyperbolic space is a generalization of a Riemann surface 
of hyperbolic type in the sense that a Riemann surface of hyperbolic 
type is a hyperbolic space. A hyperbolic space (X, dx) is said to be 
complete if for any point p of X and any positive number r, the closed 
ball of radius r around p is compact. 

The purpose of this paper is to generalize the big Picard theorem 
which states that a holomorphic mapping from the punctured disk 
into the Riemann sphere Pi(C) minus three points can be extended 
to a holomorphic mapping from the whole disk into Pi(C). H. Huber 
extended this theorem to the case where the image space is a domain 
G of hyperbolic type in a Riemann surface R such that the closure of 
G in R is compact [4]. 

THEOREM 1. Let ƒ be a holomorphic mapping from the punctured disk 
D* into a hyperbolic space X. Moreover, assume that the complex space 
X is compact. Then ƒ can be extended to a holomorphic mapping from 
the whole disk into X. 

1 This note is an abstract of the author's Ph.D dissertation written under the 
guidance of Professor S. Kobayashi. 

759 



760 M. H. KWACK LM7 

THEOREM 2. Let M he a complex manifold and A an analytic subset 
of M of codimension at least 1. Also let X be a complete hyperbolic space 
which is compact X. Then a holomorphic mapping f : M—A-+X can be 
extended to a unique holomorphic mapping from M into Y. If, moreover, 
A is of codimension at least 2, the assumption that X is compact can 
be dropped. 

THEOREM 3. Let N be a bounded symmetric domain and T an arith­
metic group of transformations acting properly discontinuously on N. 
(It is known that the quotient space N/T can be provided with a structure 
of complex space such that the projection w: N-+N/T is holomorphic) 
Let Y be the compactification of N/T by Borel and Baily [ l ] . If ƒ is a 
holomorphic mapping from the punctured disk D* into N/T which can 
be lifted locally, then ƒ can be extended to a holomorphic mapping from 
the whole disk into Y. (We say that a holomorphic mapping g from a 
complex space X into N/T can be lifted locally if given any point p of X 
there exist an open neighborhood U of p in X and a holomorphic mapping 
Jfr: U-+N such that ir o gu — g on U.) 

THEOREM 4. Let N, T and Y he as in the previous theorem and more­
over assume that N is complete. If A is an analytic subset of a complex 
manifold M of codimension at least 1, then a holomorphic mapping 
f: M—A—+N/T which can be lifted locally can he extended to a unique 
holomorphic mapping from M into Y. If, in addition, A is of codimen­
sion at least 2, the image of the extension off lies in N/T. 

One example satisfying the condition of Theorem 4 is the general­
ized upper-half plane Hn of degree n and the generalized modular 
group Tn, which acts properly discontinuously on Hn. I. Satake has 
obtained a compactification of the quotient space F„ = i?»/r n . This 
compactification of Vn by I. Satake is shown to be an analytic space 
which is isomorphic to a normal projective variety [ l ] . 
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1. Introduction. Let Ll(R) denote the space of all complex valued 
functions on the real line R which are integrable on R in the sense of 
Lebesgue. I t is well known that ^(R) forms a Banach algebra where 
the multiplication is defined by convolution; that is, 

J R 

and the norm of an element is defined by ||/|| = ƒ | f(t) \ dt. In [4] Rudin 
showed that every function in LX(R) is the convolution of two other 
functions. In other words, every element of the convolution algebra 
LX(R) can be factored in L 1 ^ )» although this algebra lacks a unit. 
Subsequently, Cohen [ l ] observed that the essential ingredient in 
Rudin's argument is that ^(R) has an approximate unit in the sense 
of the following definition. 

DEFINITION. A Banach algebra B is said to have an approximate 
unit if there exists a real number C ^ l and a collection {e\: X£A} 
of elements of B, where the index set A is a directed set, such that the 
following two conditions are satisfied: | |ex| |âC, for each X, and 
lim e\X = lim xe\ = x$ for each xE.B. Cohen went on to prove that the 
factorization theorem still holds in any Banach algebra with approxi­
mate unit. 

The results in this note stem from the observation that multiple 
factorization occurs in the sup-norm algebra C0(R), the space of all 
complex valued continuous functions on R that vanish at infinity; 
tha t is, if / i , /2 , • • • , ƒ» are functions in CQ(R) and ô>0 , then there 
exist functions g, hi, h2, • • • , hn in C0(R) such that 

(1.1) fi - ghi and ||/, - hi\\ < « (t « 1, 2, • • • , n). 


