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We investigate the asymptotic behavior as JKT—• <*> of the solution 
G(x, y\ Xo, yo: K) of the following scattering problem P : 

(i)[A+K2]U=ô(x-x0,y-yo), (*,y), (xo,yo)GD; 
(ii) dnU = Q, (x9y)EC; 
(iii) l i m p _ /2(6,o)n^ \dU/dr-iKU\ 2dS~0. 
Here C is the left branch of the coordinate hyperbola (x/h'cos n)3 

— (y/h-sin n)2 = l, w/2 <n<T. In parametric form C is given by the 
equations x = h-cos n-cosh£, y = ±h-s'm n«sinh£, £ ^ 0 . 

D is the infinite two dimensional region bounded by the convex side 
of C; D consists of all points (x, y) with elliptic coordinates (£, rj) such 
t h a t £ ^ 0 , a n d - n ^ ^ n . D*= DUC, and2(p,0) = {(x,y):x2+y* = p2}. 

A is the two dimensional Laplacian, ô(x—XQ, y—yo) is Dirac's 
ô-function, and dn denotes differentiation in the direction of the out­
ward normal to C. 

Our result is a rigorous asymptotic expansion of the Green's func­
tion G as K(>0)—>oo that holds uniformly in every closed bounded 
subset S<(#o, yo) of the "shadow" S(xo, yo) of C S(x0, yo) consists of 
those points in DUC that cannot be joined to (XQ, yo) by a line seg­
ment lying entirely in DUC 

The asymptotic expansion we get for G confirms the geometrical 
theory of diffraction by convex cylinders of infinite cross section 
(see [1]). 

Furthermore, our rigorous asymptotic solution of the problem P 
can be used with certain bounds to obtain asymptotic solutions of a 
general class of scattering problems with smooth convex boundaries 
C' that coincide with C in neighborhoods of the points of "diffrac­
tion "; the points where the boundary of S(xo, y0) intersects C For 
example if C is formed by joining a convex arc A to the "illuminated" 
part of C, then an asymptotic expansion of the solution G' in the 
shadow S'(xo, yo) (=* £(#<>, yo)) can be obtained once it is known, for 
some positive iV, that G'(x, y; x0) yQ: K)~0(KN) as K—><x>, uniformly 
in (x,y), (x,y)EA. 

1 The research described here was done at the Courant Institute of Mathematical 
Sciences in 1964 under the guidance of Professor J. B. Keller. It was supported by the 
U.S. Air Force Office of Scientific Research under grant No. AFOSR-537-64. Repro­
duction in whole or part is permitted for any purpose of the United States Government. 
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The following is an outline of the argument we use to obtain an 
asymptotic solution of the problem P . The details of the argument are 
given in [2]. 

We first express the problem in elliptic coordinates, and then con­
struct a Fourier expansion of G with respect to the eigenfunctions 
P ( i )0?î rjp, K), j = l, 2, w = l, 2, 3, • • • of the operator Ln**d*/dn* 
- CO-cos rj)2. P(1)(rç; r, K) and P<2)(T/; T, K) are the first and second 
principal solutions, relative to rj = 0, of Mathieu's equation 
(LV+T2) U = 0 on the interval —n^rjSn. The eigenvalues r® are the 
positive zeros of the entire function dP(^(n; r, K)/drj. 

Next we sum the Fourier series to a contour integral fcl(%, Vt 
£o, Vo'* Z, K)dZ/2wi, where the integrand l i s a meromorphic function 
of Z, and C is a horizontal line in the upper half of the Z-plane. 

For sufficiently large K the poles of ƒ in the upper half of the 
Z-plane are the zeros Zn(K) of the entire function P(n; Z, K) defined 
as follows. Let &(1)(£î Z, K) be an entire function of Z that satisfies the 
associated Mathieu equation d2U/d^+ [(Kh-cosh %)2-(KZ)2]U=Q 
on £ ^ 0 , and that is asymptotic to exp [i^O'sinh £]/(/i-cosh £)1/2 as 
£—»oo. Let H(rj\ Z, K) be the solution of Mathieu's equation on 
- t i g r ç ^ n such that H(0; Z, K) «A<»(0; Z, X) and dH(0; Z, J£)Afy 
~idW»(0; Z, 2C)/<#. Then F=dH(n; Z, 2f)/Ay. 

The horizontal line C lies below all of the Zn(K) as i£—» oo. 
We show that for every positive integer N the contour integral is 

equal to the sum of the residues P»(£, rj; £o, Vo- K), n = 1, 2, • • • , Nt 

of / a t the poles Zn(K)> and a remainder fc IN(%> y, £o, *7o: Z, K)dZ. 
Here C' is the contour in the 4th quadrant of the Z-plane con­
sisting of (i) the line I m Z = ImZ;y+i from R e Z = — <*> to R e Z 
= Re ZJV+1— | Ziv+i—ZN\ / 2 , (ii) the lower half of the circle | Z —ZN+I\ 

/ 2 , (iii) the line I m Z = ImZj\r+i from Re Z = Re ZN+i 
/2 to R e Z = — e, e>0 , (iv) the line R e Z = — e from 

Im Z = Im ZJV+I to Im Z = + co. 

We prove that Je /2\rdZ~0(i?j\r+i(£, ?7; Ço, ?7o:i£)) as K—»<», uni­
formly in £ and 77, for all (£, 17) such that (x, 3/) G 5 < ( % 3>o). 

Finally, we establish that if (x, y)GS<(xof yo) — C, or if (#, y) 
ES<(xo, 3>o)HC the leading term of the asymptotic expansion of Rn 

is the nth diffraction mode of the geometrical theory of diffraction. 
In conclusion we remark that if (xf y) and (x0f yo) both lie on C the 

series ^2i Rn converges to G. Otherwise, this series does not represent 
G, in fact it does not converge. This is in contrast to scattering by an 
ellipse (see [3] and [4]), a sphere (see [5]), and a parabola (see [ó]). 
For in each of these cases there is a series representation of the solu­
tion that is also an asymptotic expansion in the shadow. 

+ 
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