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In the case of a linear constant coefficient differential equation, 
& = Ax, where x is a (complex) n-vector and A is a (complex) nXn 
matrix, it is well known when all solutions are bounded; namely, if 
all eigenvalues of A are purely imaginary and all elementary divisions 
of A are simple. This condition is equivalent to the Jordan normal 
form, / , of A being (Hermitian) skew symmetric. That is if 
J=PAP-\ then 

(1) / + J* = PAP-1 + P*~*A*P* = 0, 

where M* denotes the adjoint or complex conjugated transpose of M. 
Multiplying (1) on the left by P* and on the right by P yields the 
equivalent condition that there exist a positive definite Q = P*P 
such that 

(2) QA + A*Q - 0. 

In the time dependent case, it is shown here that a necessary and 
sufficient condition that all solutions of x=A(t)x be bounded is that 
there exist a Q(t) that is uniformly bounded and uniformly positive 
definite and that satisfies 

Q(t)A(t) + A*(t)Q(t)+Q(t) = 0. 

We will use the following notation. If £ and rj are complex n-vectors, 
then 

n 

(%> *)) ** 12 til* 

will denote the inner product of £ and rj, and 

11*11 = <M>1/2 

will denote the norm of £. Also M * will denote the adjoint matrix of 
a matrix M. 

The author would like to thank James J. Hurt for several helpful 
discussions during this work. 

THEOREM 1. Let A (t) beannXn matrix function defined and continu­
ous on an open interval I. If there exists a continuously differentiable 
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matrix function Q(t) and real function y(t) and ô(t) defined on I 
such thai 

(3) Q(t)A(t) + A*Q(fy + Q(t) - 0, 

(4) 7(oll*lli^<e(o*,«>i*(oll«lli, 
(5) 0<y(t) £8(0 < oo, 

for all t in I; then all solutions of 

(6) m - A(t)x(t) 

satisfy 
(7) <Y(0||*(0||2 â *(«o)||*(«o)|I* 

/of a// J, Jo iw I. 
Conversely, i/* /&er£ am/s a razZ function a(t, to) defined in 1X1 

such that 

(8) i k o l M «(Mo)ii*(*o)ih 
(9) 0 < a(f, to) < a» 

/or all t, h in I and any solution x(t) of (6), then there exist Hermitian 
symmetric matrices Qr(t) defined for t in I and satisfying (3) for each 
T in I. Also 

(10) «-»(*, T)||S||* £ <or(0£, Ö £ a(r, Olldl*• 

PROOF. Suppose Q, 7, and 5 exist satisfying (3), (4), and (5), and 
let x(t) be any solution of (6). Then 

(d/dt)(Q(t)x(t), *(/)> 

= MMt), *«> + (Q(f)*(t), <!)) + WMf), *(0> 
- <[Q(0 + 6(0^(0 + A*(t)Q(t)]x(t), x(i)) = 0 

since (3) holds. Thus ((?(/)*(<)» *(<)) is a constant, and 

7(oll«(oll,^<e(o*(o,«(o> 
- (Q(to)x(t0),x(to)) £ Ô(*o)||*('o)||2. 

Now suppose (8) and (9) hold for all solutions of (6). Let X(t, to) 
be the fundamental matrix of (6) such that X(to, to) = I, and define 
QAt) by 

QT(l) = X*(T,t)X(r,t). 

It is clear that QT(f) is defined and differentiate for t in / and all 
T in J. Also 
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&(0 - X*(r, t)X(r, 0 + X*(T, t)X(r, t) 

- - 4*(*)X*(r, 0X(r, 0 - X*(T, t)X(r, t)A(t) 

- - [&(<M(0 + i l*W&»], 

which is equation (3). We use here the fact that 

(d/dt)X(r, t) - *(r, 0 - ~ X(r, t)A(t). 

Clearly QT(p) is Hermitian symmetric. Also 

<&(/)«, *>-<X*(r,0X(r, 01, «> 
= lk(T,0^ |M«(r , / ) | | j | |S 

by (8) since X(r, /)£ is a solution of (6) (as a function of r) and 
X(f> O^f- Similarly, we have 

|W|^|X(*,r)X(r,0«| |» 

=g «(/, r)||X(r, 0£||2 - aft r)(QT(t)l £>. Q.E.D. 

REMARK. We could have obtained the properties desired for QT(t) 
by setting 

(11) QT(t)~X*(r,t)RX(r,t) 

where R is any positive definite constant matrix. Observe that we 
have 

X*(*f to)Qr(t)X(t, to) - Qr(to) 

which can be shown directly from (11) or from (3) and differentiation. 
REMARK. If we make a change of variables in (6) by letting 

y(t) = P(t)x(t), 

then the differential equation for y(t) becomes 

y(t) - [P(l)A(t)P-Kt) + P(t)I^Kt)]y(t) = BQ)y(t). 

If for some P(t) the resulting B(t) is skew symmetric, then Q(t) 
=P*(/)P(/) will satisfy (3) as was shown for the constant coefficient 
case in the introduction. Further, if there is a differentiable P(t) such 
that Q(t) =P*(t)P(t), then the corresponding B(t) is skew symmetric. 

COROLLARY. If in Theorem 1,1= (— oo, oo), then all solutions of (6) 
are bounded (in the sense of (8) with a a constant) if and only if there 
exists a Q(t) satisfying (3), (4), and (5), but with y and b constant. 

THEOREM 2. Under the assumptions of Theorem 1 there is a constant 
matrix Q satisfying (3), (4), and (5) (with constant a and S) if and only 
if the mean value 
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0 = ]im~fTX*(r,t)RX(.r,t)dr 

exists (boundedly), is independent of t, and is nonsingular for some 
positive definite matrix R. 

PROOF. If Q exists and is constant, then X*(r, t)QX(r, t) = Q, and 
Q = Q. If Q exists and is independent of t, then 

1 rT 

X*(t, h)QX(f, to) = lim { X*(t, t0)X*(r, t)RX(r, t)X(t, t0)dr 

= lim — f X*(T, to)RX(r, h)dr = Q. 

This is equivalent to (3) by the remark made after Theorem 1. Q is 
clearly symmetric and nonnegative definite, but it is assumed non-
singular, so it must be positive definite. Q.E.D. 

REMARK. If A is constant, then X(t, t0)**X(t—tQ)~exp A(t~-tQ). 
Under our assumption that exp AT be bounded, it must be uniformly 
almost periodic. Thus 

lim — f X*(T,t)X{T,t)dr 

exists and is independent of t. Thus there is a constant Q as we know 
there must be. However, if X(/, t0) is periodic, there need not be a 
constant Q satisfying (3) as can be seen by considering a scalar equa­
tion. 
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