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In the case of a linear constant coefficient differential equation,
%=Ax, where x is a (complex) n-vector and 4 is a (complex) nXn
matrix, it is well known when all solutions are bounded; namely, if
all eigenvalues of A are purely imaginary and all elementary divisions
of A are simple. This condition is equivalent to the Jordan normal
form, J, of A being (Hermitian) skew symmetric. That is if
J=PAP-!, then

(1) J 4+ J*¥ = PAP! 4 P*¥14*P* = (,
where M* denotes the adjoint or complex conjugated transpose of .
Multiplying (1) on the left by P* and on the right by P yields the

equivalent condition that there exist a positive definite Q=P*P
such that

) 04 + 4*Q = 0.

In the time dependent case, it is shown here that a necessary and
sufficient condition that all solutions of =4 (f)x be bounded is that
there exist a Q(¢) that is uniformly bounded and uniformly positive
definite and that satisfies

Q) A®) + 4*®)Q® + Q@) = 0.

We will use the following notation. If £ and 5 are complex n-vectors,
then

<E’ 77) = i Eiﬁi

fm=l
will denote the inner product of £ and 7, and

l|lgl] = (&, gy

will denote the norm of £ Also M* will denote the adjoint matrix of
a matrix M.

The author would like to thank James J. Hurt for several helpful
discussions during this work.

THEOREM 1. Let A (8) be an n Xn matrix function defined and continu-
ous on an open interval I. If there exists a continuously differentiable
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matrix function Q(t) and real function () and 8(t) defined on I
such that

3 QAW + 4% + Q@) =0,
(4) vOlEll* = s & = s0g*,
©) 0 < vy(t) S8() < o,
for all t in I; then all solutions of

6 x(t) = A()x()

satisfy

0 Y@= = sttt
forallt, tyin I.

Conversely, if there exists a real fumction a(t, to) defined in I'X1
such that

(8) l=®]|2 = o, )] =),
9) 0<altt) < o

for all t, to in I and any solution x(t) of (6), then there exist Hermitian
symmetric matrices Q.(t) defined for t in I and satisfying (3) for each
T7in I. Also

(10) a_l(t: T)“£”2 = <Q‘r(t)£) E) = a(‘r, t)”f:'”’-

PRroOF. Suppose Q, v, and § exist satisfying (3), (4), and (5), and
let x(t) be any solution of (6). Then

(8/d){Q(A=(®), x(2))
= (Q()=(9), x(t)) + (QMAx(®), x()) + (A=), (1))
= ([0 + Q) 4(®) + 4*HDQW]x(1), x(!)) = 0
since (3) holds. Thus (Q(t)x(¢), x(¢)) is a constant, and
Y@ll=@* = @®2), =)
= (Q(t)a(to), #(t0)) = 8(ta)|| ()|
Now suppose (8) and (9) hold for all solutions of (6). Let X (¢, o)
be the fundamental matrix of (6) such that X (¢, ) =1, and define
Q-(t) by
0:.(t) = X*(r, ) X(r, §).

It is clear that Q,(¢) is defined and differentiable for ¢ in I and all
7 in I, Also
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0:(9) = X*(r, ) X (7, §) + X*(r, ) X(r, §)
= — A¥)X*(r, ) X (7, §) — X*(r, ) X(r, ) A(D)
= — [0()4() + 4*®)0()],
which is equation (3). We use here the fact that
(3/d)X(r,8) = X(r,8) = — X(r, ) A(D).
Clearly Q,(¢) is Hermitian symmetric. Also
(0-(DE, &) = (X*(r, ) X(7, )%, £)
=X, 0é* = o, Hll4]]2,

by (8) since X(r, £)¢ is a solution of (6) (as a function of 7) and
X (¢, t)E=£. Similarly, we have

ez = 1, DX, DE]®
< a(t, 1)|| X(r, D|* = a(t, )(Q-(VE, ).  QE.D.
REeMARK. We could have obtained the properties desired for Q,(¢)
by setting
(11) O.() = X*(r, )RX(r, 1)

where R is any positive definite constant matrix. Observe that we

have
X*(t, 1) Q-(D X (2, t) = Q:(t0)

which can be shown directly from (11) or from (3) and differentiation.
REMARK. If we make a change of variables in (6) by letting

¥(&) = P()x(d),
then the differential equation for y(f) becomes
3 = [P ADPW) + POPO) () = BBy

If for some P(t) the resulting B(¢) is skew symmetric, then Q(f)
=P*(t)P(¢) will satisfy (3) as was shown for the constant coefficient
case in the introduction. Further, if there is a differentiable P(¢) such
that Q(t) =P*(#) P(¢), then the corresponding B(¢) is skew symmetric.

COROLLARY. If in Theorem 1, I=(— o, «), then all solutions of (6)
are bounded (in the sense of (8) with a a constant) if and only if there
exists a Q(t) satisfying (3), (4), and (5), but with v and & constant.

THEOREM 2. Under the assumptions of Theorem 1 there is a constant
matrix Q satisfying (3), (4), and (5) (with constant a and 8) if and only
if the mean value
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1 pT
Q= lim — | X*(r,)RX(r, H)dr
2T J ¢

Tow

exists (boundedly), is independent of t, and is nonsingular for some
positive definite matrix R.

Proor. If Q exists and is constant, then X*(r, £)QX (v, £) =Q, and
0=0Q. If Q exists and is independent of ¢, then

X*(t7 tO)QX(t; tO)

]

1 T
lim — | X*(, ) X*(r, ORX (5, DX (s t)dr
~T

T

I

T
lim ——1— X*(r, t) RX (r, to)dr = Q.
Pow 2 -7
This is equivalent to (3) by the remark made after Theorem 1. { is
clearly symmetric and nonnegative definite, but it is assumed non-
singular, so it must be positive definite. Q.E.D.

REMARK. If 4 is constant, then X (¢, o) =X ({t—t)) =exp A (—1o).
Under our assumption that exp A7 be bounded, it must be uniformly
almost periodic. Thus

1 T
lim — X*(r, ) X (r, O)dr
r—w 2T -7
exists and is independent of ¢. Thus there is a constant Q as we know
there must be. However, if X (¢, #) is periodic, there need not be a
constant Q satisfying (3) as can be seen by considering a scalar equa-
tion.
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