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If G is a finite group which has a faithful complex representation 
of degree n it is said to be a linear group in n variables. This is equiva­
lent to saying G is a finite group of complex linear transformations. I t 
is customary to consider only unimodular linear transformations. For 
n ^ 4 these groups have been known for a long time. An account may 
be found in Blichfeldt's book [ l ] . For n = 5 they were determined by 
R. Brauer in [2]. Results in [2] are used to prove the following the­
orem for w = 7. 

THEOREM 1. If G has a complex irreducible representation of degree 7 
which is faithful, unimodular, and primitive, then G is one of the follow­
ing groups. Here Z(G) is the center of G. 

I. G is a uniquely determined group of order 74 «48 which has a normal 
subgroup D of order 73, G/DÇ=SL(2, 7). D is nonabelian with exponent 1. 

II . Certain subgroups of G in I of order 7Z'S where s\ 48. These con-
tain D. 

III. G/Z(G)S*PSL(2, 13) 
IV. G/Z(G)^PSL(2, 8) 
V. G/Z(G)^As 
VI. G/Z(G)SÉPSL(2, 7) 
VII. G/Z(G)SËPSU(3 , 9) 
VIII. G/Z(G)SS«(2) 

G: Z(G) 
G:Z(G) 
G: Z(G) 
G: Z(G) 
G: Z(G) 
G: Z(G) 

= 13-7-3-22. 
= 7-32-2» = 504. 
= 8!/2. 
= 7-3-23 = 168. 
= 7-33-26 = 6048 
= 7-5-3*-2». 

IX. G/Z(G) is an extension of V, VI, VII by an automorphism of 
order 2 or an extension of IV by an automorphism of order 3. For V it is 
S$,for VI it is induced by PL(2, 7). For VII it is induced by afield auto­
morphism and is G%(2). The extension of IV is induced by a field auto­
morphism. 

REMARKS, a. In the cases I I I - I X , Z(G) has order 1 or 7. If it has 
order 7 there is a subgroup Gi such that G^GiXZ(G). 

b. A group satisfying all the hypotheses of Theorem 1 except for 
primitivity is a monomial group. In this case there is a normal abelian 

1 This work was the author's doctoral dissertation at Harvard University under 
the supervision of Professor R. Brauer. It was supported by the Canadian National 
Research Council. 
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subgroup K not in the center such that G/K is a subgroup of the sym­
metric group on 7 elements 5V. 

c. The proof of Theorem 1 is similar to [2] and will appear else­
where. 
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We will outline two different generalisations of the Brauer group of 
a field (of characteristic 5^2), and a third which combines them. By 
specialising to real and complex fields, we obtain algebra which de­
scribes the (classical) real Lie groups and symmetric spaces. The 
theory below can be generalised to arbitrary commutative rings; 
details will appear elsewhere. 

We first recall the theory of the classical Brauer group of a field 
k[2]. Consider simple finite-dimensional ^-algebras with centre k. 
Any such algebra can be written as a matrix ring Mn(D), where D is a 
division ring with centre fe. Write Mn(D)~D\ this induces an equiva­
lence relation. The class of algebras is closed under tensor product. 
Multiplication is compatible with the equivalence relation, hence 
induces a product on the set of equivalence classes. For this product, 
the class of k acts as unit, and taking the opposite algebra gives an 
inverse. We have an abelian group, B(k). 

We next define the graded Brauer group [3], GB(k), of a field k of 
characteristic 5*2. Here consider (Z2~) graded ^-algebras A = AQ®AI 
of finite dimension, with no proper graded ideals, and such that the 
intersection of A 0 with the centre of A is k : we call these graded cen­
tral simple algebras over k. We induce an equivalence relation by 
A~A® Mn(k), where Mn(k) is graded by regarding it as the endo-
morphism ring of a graded vector space kn = Fo+ Vi, for some grading 

1 To obtain an abstract simple group it suffices in most cases to take the quotient 
of the commutator subgroup of G by its centre: see [5]. 


