- 5. ——, Applications of functional cohomology operations to the calculus of $\pi_{2n+i}(U(n))$ for i=6 and 7, $n \ge 4$, Mem. Fac. Sci. Kyushu Univ. Ser. A 17 (1963), 29-62.
- 6. R. E. Mosher, Some stable homotopy of complex projective space, Topology (to appear).
- 7. M. Rothenberg, The J functor and the nonstable homotopy groups of the unitary groups, Proc. Amer. Math. Soc. 15 (1964), 264-271.
- 8. H. Todo, A topological proof of the theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Kyoto 32 (1959), 109-119.
- 9. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton, N. J., 1962.

CALIFORNIA STATE COLLEGE AT LONG BEACH AND NORTHWESTERN UNIVERSITY

SOME PROPERTIES OF DISTRIBUTIONS WHOSE PARTIAL DERIVATIVES ARE REPRESENTABLE BY INTEGRATION¹

BY HERBERT FEDERER

Communicated August 21, 1967

We denote n dimensional Euclidean space by \mathbb{R}^n and let \mathbb{H}^m be m dimensional Hausdorff measure.

It is well known that distributions of the type described in the title may alternately be characterized as corresponding to H^n measurable real valued functions f with the following property: There exists a sequence of infinitely differentiable real valued functions f_i on R^n such that

$$\lim_{j\to\infty} \int_{K} \left| f_{j} - f \right| dH^{n} = 0 \quad and \quad \liminf_{j\to\infty} \int_{K} \left\| Df_{j} \right\| dH^{n} < \infty$$

for every compact subset K of R^n . The class of such functions f is now widely regarded as the proper generalization to n>1 of the class of those functions on R which are H^1 equivalent to functions with finite total variation on every compact interval. However up to now there has been lacking an extension to n>1 of the basic classical results describing the continuity properties of functions with locally finite variation, namely that the set of points of discontinuity is countable and that one-sided limits exist everywhere. At first sight such an

¹ This work was supported in part by a research grant from the National Science Foundation.

extension to n>1 seems impossible, because f may be H^n essentially unbounded, and every function H^n equivalent to f may be discontinuous everywhere. The following new results show that the problem can be solved through use of H^n approximate upper and lower limits, and the n-1 dimensional measure H^{n-1} .

For each $x \in \mathbb{R}^n$ we let $\lambda(x)$ and $\mu(x)$ be the lower and upper H^n approximate limits of f at x; we recall that $\lambda(x)$ equals the least upper bound (possibly ∞ or $-\infty$) of the set of all real numbers t such that

$$\lim_{r\to 0+} r^{-n}H^n[R^n \cap \{z\colon |z-x| \le r, f(z) \le t\}] = 0.$$

Defining

$$A = \{x : |\lambda(x)| = \infty \text{ or } |\mu(x)| = \infty\},$$

$$B = \{x : -\infty < \lambda(x) < \mu(x) < \infty\},$$

$$g(x) = [\lambda(x) + \mu(x)]/2 \text{ for } x \in \mathbb{R}^n \sim A,$$

and assuming n > 1 we prove:

- (1) $H^{n-1}(A) = 0$.
- (2) H^{n-1} almost all of B can be covered by a countable family of n-1 dimensional regular, proper submanifolds of class 1 of R^n .
 - (3) For H^{n-1} almost all x in $R^n \sim B$,

$$\lim_{r\to 0+} r^{-n} \int_{\{z: |z-x|\leq r\}} |f(z) - g(x)|^{n/(n-1)} dH^n z = 0.$$

(4) For H^{n-1} almost all x in B there exists a real valued linear function α on R^n such that

$$\lim_{r\to 0+} r^{-n} \int_{P(r)} |f(z) - \lambda(x)|^{n/(n-1)} dH^n z = 0$$

with $P(r) = \{z: |z-x| \le r \text{ and } \alpha(z-x) \ge 0\}$, and

$$\lim_{r\to 0+} r^{-n} \int_{N(r)} |f(z) - \mu(x)|^{n/(n-1)} dH^n z = 0$$

with $N(r) = \{z: |z-x| \le r \text{ and } \alpha(z-x) \le 0\}.$

(5) For H^{n-1} almost all x in R^n ,

$$g(x) = \lim_{r\to 0+} \int_{\mathbb{R}^n} f(x) r^{-n} k(r^{-1} | \mathbf{z} - \mathbf{x} |) dH^n \mathbf{z}$$

whenever k is a real valued H^1 measurable function on R with compact support such that

$$\int_{\mathbb{R}^n} k(\mid z \mid) dH^n z = 1 \quad and \quad \int_{\mathbb{R}^n} |k(\mid z \mid)|^n dH^n z < \infty.$$

The proposition (5) exhibits g as a very attractive representative of the H^n equivalence class of f, because arbitrary rotationally symmetric regularizations of f converge to g not only H^n almost everywhere, but H^{n-1} almost everywhere! (The corresponding proposition for n=1 asserts convergence H^0 almost everywhere, which means everywhere, and is classical; in this case g has locally finite total variation and $\lambda(x)$, $\mu(x)$ equal the one-sided limits of g at x.) There remains the problem of generalizing (5) to certain functions k with noncompact support, in particular to determine the smallest exponent needed to reproduce g from its Fourier transform H^{n-1} almost everywhere by spherical Riesz-Bochner summation (see [1]), provided f behaves suitably at infinity. The rotationally symmetric approach is necessary because the directions of the half-spaces occurring in (4) depend on x.

Proofs of the above propositions will appear in the author's forthcoming book "Geometric measure theory". Our arguments make use of the set

$$H = (R^n \times R) \cap \{(x, y) : y \leq \mu(x)\},\$$

whose essential boundary (for the purpose of the Gauss-Green theorem) is H^n almost equal to the set

$$C = (R^n \times R) \cap \{(x, y) : \lambda(x) \leq y \leq \mu(x)\},\$$

which can H^n almost be covered by a countable family of n dimensional regular, proper submanifolds of class 1 of $R^n \times R$. From the geometric properties of these sets we obtain analytic properties of f by studying the n dimensional normal current f in f (see [3]) defined by the formula

$$T(\phi) = \int_{R^n} f \wedge \phi$$

for every infinitely differentiable differential form ϕ of degree n on R^n with compact support. For example, we show that

$$\|\partial T\|(W) = \int_{\mathbb{R}} H^{n-1}[W \cap \{x : \lambda(x) \leq y \leq \mu(x)\}] dH^{1}y$$

for every Borel subset W of R^n . (For the special case when f is linearly continuous in the sense of [4], this formula has been obtained independently by a different method in [5].) Our approach also yields a

new proof of the following result of [2]: For H^n almost all x in R^n there exists a real valued linear function β on R^n such that

$$\lim_{r\to 0+} r^{-n} \int_{\{z: |z-x| \le r\}} \epsilon(z)^{n/(n-1)} dH^n z = 0$$

with
$$\epsilon(z) = |f(z) - f(x) - \beta(z - x)| / |z - x|$$
.

The author wishes to thank Casper Goffman for some stimulating discussions about the subject of this note, in particular for raising questions concerning the nature of the sets A, B and C. Regarding the class of functions studied in [4] one can now assert the equivalence of the four properties: (I) f is essentially linearly continuous. (II) g is linearly continuous. (III) $H^{n-1}(B) = 0$. (IV) $\|\partial T\|(W) = 0$ whenever $W \subset \mathbb{R}^n$ with $H^{n-1}(W) < \infty$.

REFERENCES

- 1. S. Bochner, Summation of multiple Fourier series by spherical means, Trans Amer. Math. Soc. 40 (1936), 175-207.
- 2. A. P. Calderón and A. Zygmund, On the differentiability of functions which are of bounded variation in Tonelli's sense, Rev. Un. Mat. Argentina 20 (1960), 102-121.
- 3. H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458-520.
- 4. C. Goffman, A characterization of linearly continuous functions whose partial derivatives are measures, Acta Math. 117 (1967), 165-190.
- 5. W. Ziemer, The area and variation of linearly continuous functions, Proc. Amer. Math. Soc. (to appear).

Brown University