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We denote n dimensional Euclidean space by Rn and let Hm be m 
dimensional Hausdorff measure. 

It is well known that distributions of the type described in the title 
may alternately be characterized as corresponding to Hn measurable 
real valued functions ƒ with the following property: There exists a 
sequence of infinitely differentiable real valued functions fj on Rn such 
that 

lim f \fj-f\dHn = Q and liminf f \\Dfu\dH* < <*> 

for every compact subset K of Rn. The class of such functions ƒ is now 
widely regarded as the proper generalization to n > 1 of the class of 
those functions on R which are H1 equivalent to functions with finite 
total variation on every compact interval. However up to now there 
has been lacking an extension to n>\ of the basic classical results 
describing the continuity properties of functions with locally finite 
variation, namely that the set of points of discontinuity is countable 
and that one-sided limits exist everywhere. At first sight such an 

1 This work was supported in part by a research grant from the National Science 
Foundation. 
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extension to n > 1 seems impossible, because ƒ may be Hn essentially 
unbounded, and every function Hn equivalent to ƒ may be discontinu­
ous everywhere. The following new results show that the problem can 
be solved through use of Hn approximate upper and lower limits, 
and the n — 1 dimensional measure Hn~K 

For each xÇzRn we let \(x) and fi(x) be the lower and upper Hn ap­
proximate limits of ƒ at x\ we recall that \{x) equals the least upper 
bound (possibly oo or — oo ) of the set of all real numbers / such that 

lim r~nHn[R»r\ {z: \ z - x\ g r, ƒ(*) g t}] = 0. 
r-+0+ 

Defining 

A = {x: | X(x) | = oo or | n(x) | = oo }, 

B = {x: — oo < \(x) < fx(x) < oo }, 

g(x) = [\(x) + fi(x)]/2 for x G Rn ~ A, 

and asuuming n> 1 we prove: 
(1) Hn~1(A)=-0. 
(2) i?"-"1 almost all of B can be covered by a countable family of n — \ 

dimensional regular, proper submanifolds of class 1 of Rn. 
(3) For Hn~l almost all x in Rn~B, 

lim r~n f | ƒ(*) - g(x) \*u»~»dH»z « 0. 

(4) For Hn~x almost all x in B there exists a real valued linear func­
tion a on Rn such that 

lim r - f | ƒ(*) - \(x) \»«»-»dHnz = 0 

with P(r) = {z: \z--x\ ^ r and a(z—#)è0}, a#<2 

lim r~w f | ƒ(*) - /*(*) l»^*-"^»* = 0 

witó N(r)** {s: |s—#| ^ r <wi ar(3—#)g0}. 
(5) F<?r if*-1 a/was/ all x in i?n, 

g(#) = lim I f(x)r"*i(r-i | z - *| )rf#»s 
r-*0H- J Rn 

whenever k is a real valued Hl measurable function on R with compact 
support such that 
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f k(\z\)dHnz~ I and f \k(\z\)\ndHnz< oo. 
J Bn J R« 

The proposition (5) exhibits g as a very attractive representative 
of the Hn equivalence class of ƒ, because arbitrary rotationally sym­
metric regularizations of ƒ converge to g not only Hn almost every­
where, but Hn~l almost everywhere! (The corresponding proposition 
for w = l asserts convergence H° almost everywhere, which means 
everywhere, and is classical; in this case g has locally finite total 
variation and X(#), ix(x) equal the one-sided limits of g at x.) There 
remains the problem of generalizing (5) to certain functions k with 
noncompact support, in particular to determine the smallest ex­
ponent needed to reproduce g from its Fourier transform Hn~l 

almost everywhere by spherical Riesz-Bochner summation (see [l]), 
provided ƒ behaves suitably at infinity. The rotationally symmetric 
approach is necessary because the directions of the half-spaces 
occurring in (4) depend on x. 

Proofs of the above propositions will appear in the author's forth­
coming book "Geometric measure theory". Our arguments make use 
of the set 

H~(R«XR)C\ {(*, y):y S M(*)}, 

whose essential boundary (for the purpose of the Gauss-Green the­
orem) is Hn almost equal to the set 

C « (R* X R) H {(*, y):\(x) £y£ /*(*)}, 

which can Hn almost be covered by a countable family of n dimen­
sional regular, proper submanifolds of class 1 of RnXR. From the 
geometric properties of these sets we obtain analytic properties of ƒ 
by studying the n dimensional normal current T in Rn (see [3]) 
defined by the formula 

TO- f /A* 

for every infinitely differentiate differential form <f> of degree n on Rn 

with compact support. For example, we show that 

||ôr||(ÏF) = Ç H"-l[WC\ {x:\(x) ^y^ tx{x)}}dHly 
J R 

for every Borel subset W of Rn. (For the special case when ƒ is linearly 
continuous in the sense of [4], this formula has been obtained inde­
pendently by a different method in [5].) Our approach also yields a 
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new proof of the following result of [2] : For Hn almost all x in Rn there 
exists a real valued linear function /3 on Rn such that 

lim r~n I €{z)nl^-l)dHnz = 0 

with e(z) = | f(z) -f(x) —/3(s— )̂ | / | z~x\. 
The author wishes to thank Casper Goffman for some stimulating 

discussions about the subject of this note, in particular for raising 
questions concerning the nature of the sets A, B and C. Regarding the 
class of functions studied in [4] one can now assert the equivalence of 
the f our properties: (I) ƒ is essentially linearly continuous. (II) g is 
linearly continuous. (Ill) -ffw~1(J5) = 0. (IV) ||3r||(W0 = 0 whenever 
WQRn with H"~l(W) < oo. 
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