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The purpose of this paper is to give a brief general account of the 
completely reducible finite-dimensional representations of a locally 
finite group G over a given algebraically closed field K. Theorem 1 
shows that all such representations of G can be brought down to the 
algebraic closure F in K of the prime field of K. This reduces all 
further considerations in this account to countable groups. Theorem 2 
characterizes the existence of a faithful completely reducible repre­
sentation of G of degree n over K in terms of the existence of such 
representations for appropriate finite subgroups of G. 

Throughout the paper, G denotes a locally finite group, K denotes 
an arbitrary algebraically closed field and F denotes the algebraic 
closure in K of the prime field of K. F denotes an w-dimensional vector 
space over K. An F-form of V is an -F-subspace W of V such that W 
and K are linearly disjoint over K and Vis the X-span of W. (Equiva-
lently, an F-form of V is the i^-span of a basis of V.) Il A is an F-
algebra, AK denotes the algebra A®pK. 

THEOREM 1. Let pbea completely reducible representation of G in V. 
Then V has an F-form W which is stable under the paction of G in V. 

PROOF. I t suffices by complete reducibility to consider the case in 
which G acts irreducibly in V. 

If G is finite, the assertion follows (upon passing to the group alge­
bra of G over F) from the fact that if A is a finite-dimensional associa* 
tive algebra over F, then an irreducible (finite-dimensional) AK-
module has an F-form stable under A. Since the kernel of an irreduc­
ible representation of such an A contains the radical of A, it suffices to 
prove this in the case that A is semisimple. But for A semisimple, the 
assertion is obvious since : 

(1) A = *%2?@Ai where Ai, • • • , Am are minimal right ideals of A ; 
(2) AK = S i*© (À Ï)K and the (A 1)K are minimal right ideals of AK\ 
(3) any irreducible A ^-module is isomorphic to one of the (AÎ)K 

[l, Chapter IV] . 
Next assume that G is locally finite and that (p, V) is an irreducible 

representation of G over K of degree n. Then some finite subgroup H 
of G acts irreducibly in V. (For example let S be a finite subset of G 

1 This research was partially supported by research grant NSF-GP-4017. 
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such that p(5) is a maximal ^-independent subset of p(G), and let H 
be the subgroup generated by 5.) Since H is finite and acts irreducibly 
in V, V has an F-form W stable under the action of H. We claim that 
W is stable under the action of G. Thus let g be any element of G and 
let I be the subgroup of G generated by H and g. / is finite and acts 
irreducibly in V; and consequently I also stabilizes some F-form, say 
X, of V. The F-algebras AH, AI generated by p(H), p(I) respectively 
stabilize W, X respectively. By Burnside's Theorem [l, p. 182], 
^^|TF=HomF(TF, W) and Ai\X = KomF(X, X). Thus d i m ^ * 
= dimFAi = n2. Since AHQAi, we have AH = Ai. Thus I stabilizes W. 
Thus g stabilizes W. Since g was chosen arbitrarily, G stabilizes W. 

LEMMA.2 Let Si, 52, • • • be a sequence of finite nonempty sets. For 
each i*z2, let ƒ* be a function from Si into 5t-_i. Then there exists a se­
quence si, S2, • • • such that Si(E.Si andfi(Si)=Si~ifor all i^2. 

PROOF. For convenience, let S0 be a set consisting of a single ele­
ment So and let / i be the function from Si into 50. Let fij=fi o/t-+i 
o • • • o ƒ/ for i<j. Suppose that a sequence s0f sif • • • , sn has been 
found such that for i^i^n and i<j, ƒ»•($*) =Sf-i and s*E/ty(Sy). 
(If w = 0, So by itself is such a sequence). To prove the lemma, it 
suffices by induction to show that such a sequence can be augmented 
—that is, that there exists Sn+iESn+i such that /n+i(sn+i) = sn and 
Sn+i£fn+i,y(»Sy) for n+Kj. For this, choose for each j>n+l an 
element Xj of Sj such that fnj(xj) = sn ; and for j > n+1, let ;yy =/n+i,yfe). 
Then since Sw+i is finite, there exists y in Sn+i such that y — yj for 
infinitely many j . Now y = sn+i has the desired properties. 

THEOREM 2. G Aas a faithful completely reducible representation of 
degree n over K if and only if 

(1) G is countable ; and 
(2) each finite subset of G is contained in a finite subgroup H which 

has a faithful completely reducible representation of degree n over K.z 

PROOF. Suppose first that G has a faithful completely reducible 
representation p in F over K. Then G is countable by Theorem 1. Let 
S be a finite subset of G. Let F = 2 ? © ^* where the Vu are irreduc­
ible G-subspaces of V. For each k, G has a finite subgroup Hk which 

2 This lemma is a special case of a theorem of König [3, Theorem 6, p. 81]. 
3 Malcev, using quite different techniques, shows in [4] that a group G, every 

finitely generated subgroup of which has a faithful representation of degree n, has a 
faithful representation of degree nt though possibly over a much bigger field. In this 
general setting, one has no control over the ground field (as is illustrated by unipotent 
groups over large fields of nonzero characteristic). 
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is irreducible in Vk. (An argument for this is given in the proof of 
Theorem 1.) Let H be the subgroup generated by the set SUHiU • • • 
U i î m . H is finite and contains S; and (p\H, V) is a faithful completely 
reducible representation of H of degree n over K. 

Now suppose that G satisfies the conditions (1) and (2). Let F be a 
vector space over K of dimension n. Then we can choose a chain 
H1QH2Q • • • of finite subgroups Hi of G such that G=Uiï* and 
such that for each i9 the set Si of equivalence classes of faithful com­
pletely reducible representations of Hi in F over K is nonempty. The 
Si are finite, and we proceed to define mappings ƒ»•: 5t—>S»_i for i ^ 2 . 
For i ^ 2, let p be a representative of an element of Si. Pass from the 
representation (p|iJ t_i, F) to the direct sum (p', F') of its composi­
tion factors as representations of i2V_i over X. Then (p', F') is a com­
pletely reducible representation of iTt_i of degree n over i£, and we 
claim that it is faithful. Thus let / be the kernel in iJ t_i of (p', V). 
p(I) is then a normal unipotent subgroup of p(i?*_i). Since p is faith­
ful, it follows that J is a p-group if K has characteristic p > 0 and that 
J = {1} if i£ has characteristic 0. iTi_i has a faithful completely re­
ducible representation p»_i (since S*_i is nonempty), and the preced­
ing observation shows that Pi-i(I) is a normal unipotent subgroup of 
p t_i(if t_i). As a normal subgroup of the completely reducible linear 
group pi-.i(Hi-i), pi-i(I) is completely reducible [l, p. 343]. And as a 
completely reducible linear unipotent group, pi~i(I) = {1} [2, pp. 
775-776]. Since p ^ i is faithful, / = { l } . Thus (p', V) is faithful. 
Therefore (p', V') is equivalent to a representative of a unique ele­
ment of Si-i. Thus the mapping (p, V)—*(p'9 F') induces a mapping 
ƒ»•: 5t—»5t-_i. By the lemma, there exists a sequence si, s2, • • • such 
that SiÇzSi and ƒ($*•) =s»_i for i*z 2. For each i, choose a representative 
pt- of St; and let F* be the iï$~module over K defined by the representa­
tion (pt-, F) . (The underlying vector space of F» is F; and the action of 
Hi on Vi is given by p*.) Then the construction of the ƒ»• and the 
equations ƒ»•($»•) = s»--i show that for i ^ 2 , F t_i and the direct sum VI 
of the composition factors of the restriction of Ft- to Hi-i are equiva­
lent as jyt_i-modules over K. For each i, choose a decomposition 
Vi** Z&=i © ^ . * °f V» where the V»-,*. are irreducible .HVsubmodules 
of Ft- over K. Then W i â ^ è • • • . (If i ^ 2 , then tiitètii-i; for by the 
equivalence of Vi-i and V/ , n t_i is the number of composition factors 
of the restriction V»-|.ffV_i of Ft- to Hi-\.) For some j , we have Wiè^2 

^ • • • ;>wy = wy+i = wy+2 = • • • . Thus for i^j+1, ni-i = tii and the 
series 

vitl c vitl e Ft-t2 c • • • c Z © .̂* = ^ 
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of JEZVsubmodules of Vi is in fact a composition series for the restric­
tion of Vi to Hi-i. (For if the above series were to admit an i? t_i-stable 
refinement, a composition series for the restriction of Vi to if t_i would 
determine more than Ui composition factors, contradicting fti-i^tti.) 
I t follows that for i à j + 1 , the representation Vi of JEf̂ -i over K de­
fined earlier is equivalent to the restriction Vi\Hi~\ of Vi to i?i~i. 
Thus Vi-i and V»| i?»_i are equivalent iori*zj+l. By suitably modi­
fying the Vi successively up to equivalence, we may assume that 
VV-i = V<|fZV-i for * è j + l . The condition V^^V^H^ for i^j+1 
is that the underlying vector spaces of the Vi coincide for i*zj+l; 
and that if pii He-»Hom#(Ft, V*) denotes the action of Hi on the 
underlying vector space Vi of V» for all i, then p 8 | i ? r = p r for j + 1 
^r^s. Now if p = Urgy+i Pr (that is, if p is the function with domain 
G = Ur^y+i # r defined by p(g) —prig) if gGHr and r è i + 1 ) , then p is a 
faithful completely reducible representation of G of degree n. 
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