REPRESENTATIONS OF LOCALLY FINITE GROUPS

BY DAVID J. WINTER1

Communicated by G. B. Seligman, August 15, 1967

The purpose of this paper is to give a brief general account of the completely reducible finite-dimensional representations of a locally finite group G over a given algebraically closed field K. Theorem 1 shows that all such representations of G can be brought down to the algebraic closure F in K of the prime field of K. This reduces all further considerations in this account to countable groups. Theorem 2 characterizes the existence of a faithful completely reducible representation of G of degree n over K in terms of the existence of such representations for appropriate finite subgroups of G.

Throughout the paper, G denotes a locally finite group, K denotes an arbitrary algebraically closed field and F denotes the algebraic closure in K of the prime field of K. V denotes an n-dimensional vector space over K. An F-form of V is an F-subspace W of V such that W and K are linearly disjoint over K and V is the K-span of W. (Equivalently, an F-form of V is the F-span of a basis of V.) If A is an F-algebra, A_K denotes the algebra $A \otimes_F K$.

Theorem 1. Let ρ be a completely reducible representation of G in V. Then V has an F-form W which is stable under the ρ -action of G in V.

PROOF. It suffices by complete reducibility to consider the case in which G acts irreducibly in V.

If G is finite, the assertion follows (upon passing to the group algebra of G over F) from the fact that if A is a finite-dimensional associative algebra over F, then an irreducible (finite-dimensional) A_{K} -module has an F-form stable under A. Since the kernel of an irreducible representation of such an A contains the radical of A, it suffices to prove this in the case that A is semisimple. But for A semisimple, the assertion is obvious since:

- (1) $A = \sum_{i=1}^{m} \bigoplus A_{i}$ where A_{1}, \dots, A_{m} are minimal right ideals of A_{i} ;
- (2) $A_K = \sum_{i=1}^{m} \bigoplus (A_i)_K$ and the $(A_i)_K$ are minimal right ideals of A_K ;
- (3) any irreducible A_K -module is isomorphic to one of the $(A_i)_K$ [1, Chapter IV].

Next assume that G is locally finite and that (ρ, V) is an irreducible representation of G over K of degree n. Then some finite subgroup H of G acts irreducibly in V. (For example let S be a finite subset of G

¹ This research was partially supported by research grant NSF-GP-4017.

such that $\rho(S)$ is a maximal K-independent subset of $\rho(G)$, and let H be the subgroup generated by S.) Since H is finite and acts irreducibly in V, V has an F-form W stable under the action of H. We claim that W is stable under the action of G. Thus let G be any element of G and let G be the subgroup of G generated by G and G is finite and acts irreducibly in G and consequently G also stabilizes some G-form, say G and G is finite and consequently G also stabilizes some G in G is finite and acts irreducibly in G and consequently G also stabilizes some G is finite and acts irreducibly in G and G is finite and acts irreducibly in G and G is finite and acts irreducibly in G and G is finite and acts irreducibly in G and G is finite and acts irreducibly in G is finite and acts irreducibly in G and acts irreducibly in G is finite and acts irreducible in G is

LEMMA.² Let S_1, S_2, \cdots be a sequence of finite nonempty sets. For each $i \ge 2$, let f_i be a function from S_i into S_{i-1} . Then there exists a sequence s_1, s_2, \cdots such that $s_i \in S_i$ and $f_i(s_i) = s_{i-1}$ for all $i \ge 2$.

PROOF. For convenience, let S_0 be a set consisting of a single element s_0 and let f_1 be the function from S_1 into S_0 . Let $f_{ij} = f_i \circ f_{i+1} \circ \cdots \circ f_j$ for i < j. Suppose that a sequence s_0 , s_1 , \cdots , s_n has been found such that for $i \le i \le n$ and i < j, $f_i(s_i) = s_{i-1}$ and $s_i \in f_{ij}(S_j)$. (If n = 0, s_0 by itself is such a sequence). To prove the lemma, it suffices by induction to show that such a sequence can be augmented—that is, that there exists $s_{n+1} \in S_{n+1}$ such that $f_{n+1}(s_{n+1}) = s_n$ and $s_{n+1} \in f_{n+1,j}(S_j)$ for n+1 < j. For this, choose for each j > n+1 an element s_j of s_j such that s_j and for s_j and for s_j and for s_j and that s_j and s_j such that s_j and for s_j and for s_j and that s_j are s_j for infinitely many s_j . Now s_j and has the desired properties.

Theorem 2. G has a faithful completely reducible representation of degree n over K if and only if

- (1) G is countable; and
- (2) each finite subset of G is contained in a finite subgroup H which has a faithful completely reducible representation of degree n over K.3

PROOF. Suppose first that G has a faithful completely reducible representation ρ in V over K. Then G is countable by Theorem 1. Let S be a finite subset of G. Let $V = \sum_{1}^{m} \oplus V_k$ where the V_k are irreducible G-subspaces of V. For each k, G has a finite subgroup H_k which

² This lemma is a special case of a theorem of König [3, Theorem 6, p. 81].

³ Malcev, using quite different techniques, shows in [4] that a group G, every finitely generated subgroup of which has a faithful representation of degree n, has a faithful representation of degree n, though possibly over a much bigger field. In this general setting, one has no control over the ground field (as is illustrated by unipotent groups over large fields of nonzero characteristic).

is irreducible in V_k . (An argument for this is given in the proof of Theorem 1.) Let H be the subgroup generated by the set $S \cup H_1 \cup \cdots \cup H_m$. H is finite and contains S; and $(\rho \mid H, V)$ is a faithful completely reducible representation of H of degree n over K.

Now suppose that G satisfies the conditions (1) and (2). Let V be a vector space over K of dimension n. Then we can choose a chain $H_1 \subseteq H_2 \subseteq \cdots$ of finite subgroups H_i of G such that $G = \bigcup H_i$ and such that for each i, the set S_i of equivalence classes of faithful completely reducible representations of H_i in V over K is nonempty. The S_i are finite, and we proceed to define mappings $f_i: S_i \rightarrow S_{i-1}$ for $i \ge 2$. For $i \ge 2$, let ρ be a representative of an element of S_i . Pass from the representation $(\rho | H_{i-1}, V)$ to the direct sum (ρ', V') of its composition factors as representations of H_{i-1} over K. Then (ρ', V') is a completely reducible representation of H_{i-1} of degree n over K, and we claim that it is faithful. Thus let I be the kernel in H_{i-1} of (ρ', V') . $\rho(I)$ is then a normal unipotent subgroup of $\rho(H_{i-1})$. Since ρ is faithful, it follows that I is a p-group if K has characteristic p>0 and that $I = \{1\}$ if K has characteristic 0. H_{i-1} has a faithful completely reducible representation ρ_{i-1} (since S_{i-1} is nonempty), and the preceding observation shows that $\rho_{i-1}(I)$ is a normal unipotent subgroup of $\rho_{i-1}(H_{i-1})$. As a normal subgroup of the completely reducible linear group $\rho_{i-1}(H_{i-1})$, $\rho_{i-1}(I)$ is completely reducible [1, p. 343]. And as a completely reducible linear unipotent group, $\rho_{i-1}(I) = \{1\}$ [2, pp. 775-776]. Since ρ_{i-1} is faithful, $I = \{1\}$. Thus (ρ', V') is faithful. Therefore (ρ', V') is equivalent to a representative of a unique element of S_{i-1} . Thus the mapping $(\rho, V) \rightarrow (\rho', V')$ induces a mapping $f_i: S_i \rightarrow S_{i-1}$. By the lemma, there exists a sequence s_1, s_2, \cdots such that $s_i \in S_i$ and $f(s_i) = s_{i-1}$ for $i \ge 2$. For each i, choose a representative ρ_i of s_i ; and let V_i be the H_i -module over K defined by the representation (ρ_i, V) . (The underlying vector space of V_i is V; and the action of H_i on V_i is given by ρ_i .) Then the construction of the f_i and the equations $f_i(s_i) = s_{i-1}$ show that for $i \ge 2$, V_{i-1} and the direct sum V_i' of the composition factors of the restriction of V_i to H_{i-1} are equivalent as H_{i-1} -modules over K. For each i, choose a decomposition $V_i = \sum_{k=1}^{n_i} \oplus V_{i,k}$ of V_i where the $V_{i,k}$ are irreducible H_i -submodules of V_i over K. Then $n_1 \ge n_2 \ge \cdots$. (If $i \ge 2$, then $n_i \le n_{i-1}$; for by the equivalence of V_{i-1} and V'_i , n_{i-1} is the number of composition factors of the restriction $V_i \mid H_{i-1}$ of V_i to H_{i-1} .) For some j, we have $n_1 \ge n_2$ $\geq \cdots \geq n_i = n_{i+1} = n_{i+2} = \cdots$. Thus for $i \geq j+1$, $n_{i-1} = n_i$ and the series

$$V_{i,1} \subset V_{i,1} \oplus V_{i,2} \subset \cdots \subset \sum_{k=1}^{n_i} \oplus V_{i,k} = V_i$$

of H_i -submodules of V_i is in fact a composition series for the restriction of V_i to H_{i-1} . (For if the above series were to admit an H_{i-1} -stable refinement, a composition series for the restriction of V_i to H_{i-1} would determine more than n_i composition factors, contradicting $n_{i-1} = n_i$.) It follows that for $i \ge j+1$, the representation V_i' of H_{i-1} over K defined earlier is equivalent to the restriction $V_i|H_{i-1}$ of V_i to H_{i-1} . Thus V_{i-1} and $V_i|H_{i-1}$ are equivalent for $i \ge j+1$. By suitably modifying the V_i successively up to equivalence, we may assume that $V_{i-1} = V_i|H_{i-1}$ for $i \ge j+1$. The condition $V_{i-1} = V_i|H_{i-1}$ for $i \ge j+1$ is that the underlying vector spaces of the V_i coincide for $i \ge j+1$; and that if $\rho_i \colon H_i \to \operatorname{Hom}_K(V_i, V_i)$ denotes the action of H_i on the underlying vector space V_i of V_i for all i, then $\rho_i|H_r = \rho_r$ for $j+1 \le r \le s$. Now if $\rho = \bigcup_{r \ge j+1} \rho_r$ (that is, if ρ is the function with domain $G = \bigcup_{r \ge j+1} H_r$ defined by $\rho(g) = \rho_r(g)$ if $g \in H_r$ and $r \ge j+1$), then ρ is a faithful completely reducible representation of G of degree n.

BIBLIOGRAPHY

- 1. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- 2. E. Kolchin, On certain concepts in the theory of algebraic matric groups, Ann. of Math. (2) 49 (1948), 774-789.
- 3. D. König, Theorie der Endlichen und Unendlichen Graphen, Chelsea, New York, 1950.
- 4. A. I. Malcev, On the faithful representations of infinite groups by matrices, Mat. Sb. 8 (1940), 405-422; English transl., Trans. Amer. Math. Soc. (2) 45 (1965), 1-18.

YALE UNIVERSITY