THE UNIQUENESS OF THE (COMPLETE) NORM TOPOLOGY

BY B. E. JOHNSON

Communicated by Richard Arens, March 7, 1967

In this paper we show that every semisimple Banach algebra over R or C has the uniqueness of norm property, that is we show that if $\mathfrak A$ is a Banach algebra with each of the norms $\|\ \|$, $\|\ \|$ ' then these norms define the same topology. This result is deduced from a maximum property of the norm in a primitive Banach algebra (Theorem 1).

In the following F is a field which may be taken throughout as R, the real field, or C, the complex field. If \mathfrak{X} is a normed space then $\mathfrak{B}(\mathfrak{X})$ will denote the space of bounded linear operators on \mathfrak{X} .

LEMMA 1. Let F, G be closed subspaces of the Banach space E such that F+G=E. Then there exists L>0 such that if $x\in E$ then there is an $f\in F$ with

- (i) $||f|| \le L||x||$.
- (ii) $x-f \in G$.

PROOF. The map $(f, g) \rightarrow f + g$ is a continuous map of $F \oplus G$ onto E and so is open by the open mapping theorem [1, p. 34]. Thus there is $\delta > 0$ such that if $y \in E$ with $||y|| < \delta$ then there are f', $g' \in G$ with ||f'||, $||g'|| \le 1$ and |f' + g' = y. The result of the lemma then follows if we take $L = \delta^{-1}$, $y = x||x||^{-1}\delta$ and f = f'L||x||.

THEOREM 1. Let $\mathfrak A$ be a Banach algebra over F and let $\mathfrak X$ be a normed space over F. Suppose that $\mathfrak X$ is a faithful strictly irreducible left $\mathfrak A$ -module and that the maps $\xi \to a\xi$ from $\mathfrak X$ into $\mathfrak X$ are continuous for each $a \in \mathfrak A$. Then there exists a constant M such that

$$||a\xi||' \leq M||a|| \cdot ||\xi||'$$

for all $a \in \mathfrak{A}$, $\xi \in \mathfrak{X}$, where $||\cdot||$ is the norm in \mathfrak{A} and $||\cdot||'$ the norm in \mathfrak{X} .

The theorem asserts that the natural map $\mathfrak{A} \rightarrow \mathfrak{G}(\mathfrak{X})$ is continuous. It is a much stronger version of [4, Theorem 2.2.7] but applicable only to primitive algebras. It would be interesting to know how far it can be generalized.

PROOF. If $\xi \in \mathfrak{X}$ and $a \to a\xi(\mathfrak{A} \to \mathfrak{X})$ is continuous then the map $a \to ab$ $\to ab\xi$, being a composition of continuous maps, is continuous. Since \mathfrak{X} is strictly irreducible, if $\xi \neq 0$ we can, by a suitable choice of b, make $b\xi$ any particular vector in \mathfrak{X} and so if $a \to a\xi$ is continuous for one nonzero ξ it is continuous for all ξ in \mathfrak{X} . We shall deduce a contradic-

tion by assuming $a \rightarrow a\xi$ continuous only for $\xi = 0$ and hence show that all these maps are continuous. We assume $\mathfrak{X} \neq \{0\}$ since this case is trivial.

The \mathfrak{A} -module \mathfrak{X} is of infinite dimension over F since otherwise, as \mathfrak{X} is faithful, \mathfrak{U} would be a finite dimensional algebra and any linear map $\mathfrak{A} \to \mathfrak{X}$ would be continuous. Since \mathfrak{X} is a strictly irreducible \mathfrak{A} -module the norm on \mathfrak{A} determines a complete norm $\|\cdot\|$ on \mathfrak{X} [4, Theorem 2.2.6] and so the centralizer \mathfrak{D} of \mathfrak{A} on \mathfrak{X} is isomorphic with R, C or the quarternions [4, Lemma 2.4.4] and in any case is of finite dimension over F. Since \mathfrak{X} is of infinite dimension over F it is of infinite dimension over \mathfrak{D} . We can thus choose a linearly independent (over \mathfrak{D}) sequence ξ_1, ξ_2, \cdots from \mathfrak{X} with $\|\xi_i\|' = 1$.

We now show that for each K, $\epsilon > 0$ and for each positive integer m there is $x \in \mathbb{X}$ such that

- (i)' $||x|| < \epsilon$.
- $(ii)' x\xi_1 = x\xi_2 = \cdots = x\xi_{m-1} = 0.$
- (iii)' $||x\xi_m||'>K$.

Put $J_i = \{a; a \in \mathfrak{A}, a\xi_i = 0\}$, then $[\mathbf{3}, p. 6, \text{Theorem 2}]$ J_i is a maximal modular left ideal and $I = (J_1 \cap J_2 \cdot \cdot \cdot \cap J_{m-1}) + J_m$ is a left ideal containing J_m . Since ξ_1, \dots, ξ_m are linearly independent over \mathfrak{D} we can find, by the density theorem $[\mathbf{3}, p. 28]$, $y \in \mathfrak{U}$ such that $y\xi_1 = y\xi_2 = \dots = y\xi_{m-1} = 0$ and $y\xi_m = \xi_m \neq 0$. We have $y \in I$, $y \notin J_m$ so that I contains J_m properly and, by maximality of J_m , $I = \mathfrak{A}$. Take the number L given by applying Lemma 1 with $E = \mathfrak{U}$, $F = J_1 \cap J_2 \cdot \cdot \cdot \cap J_{m-1}$, $G = J_m$. By the discontinuity of the map $x \to x\xi_m$ we can find $x_0 \in \mathfrak{U}$ satisfying (i)' with ϵ replaced by ϵ/L and (iii)'. Then, by Lemma 1, there exists $x \in J_1 \cap J_2 \cdot \cdot \cdot \cap J_{m-1}$ (so that (ii)' holds for x), such that $x_0 - x \in J_m$ (i.e. $x_0 \xi_m = x\xi_m$) and $||x|| \leq L||x_0|| < \epsilon$.

Now choose, by induction, a sequence x_1, x_2, \cdots in \mathfrak{A} such that (i)° $||x_n|| < 2^{-n}$.

(ii)
$$x_n \xi_1 = \cdots = x_n \xi_{n-1} = 0.$$

(iii)°
$$||x_n\xi_n||' \ge n + ||x_1\xi_n + \cdots + x_{n-1}\xi_n||'$$
.

Put $z_i = \sum_{n>i} x_n$. Since $x_n \in J_i$ for n>i and J_i is closed in \mathfrak{A} we see that $z_i \in J_i$, that is $z_i \xi_i = 0$, and $z_0 = x_1 + \cdots + x_i + z_i$. Thus

$$||z_0\xi_i||' = ||x_1\xi_i + \dots + x_i\xi_i + z_i\xi_i||'$$

$$\geq ||x_i\xi_i||' - ||x_1\xi_i + \dots + x_{i-1}\xi_i||'$$

$$\geq i.$$

using (iii)°. Since $||\xi_i||'=1$ this contradicts the hypothesis that $\xi \to z_0 \xi$ is a bounded linear operator in \mathfrak{X} .

We have shown that $(a, \xi) \rightarrow a\xi$ is continuous $(\mathfrak{A}, \| \|) \rightarrow (\mathfrak{X}, \| \|')$

for each $\xi \in \mathfrak{X}$. The result of the theorem now follows since we also have that $(a, \xi) \rightarrow a\xi$ is continuous for fixed a (by hypothesis) and so by [2, p. 38, Proposition 2] $(a, \xi) \rightarrow a\xi$ is jointly continuous.

THEOREM 2. Let $\mathfrak A$ be a semisimple algebra over R or C. Let $\| \ \|'$ be norms on $\mathfrak A$ such that $(\mathfrak A, \| \ \|)$ and $(\mathfrak A, \| \ \|')$ are Banach algebras. Then the norms $\| \ \|, \| \ \|'$ define the same topology on $\mathfrak A$.

PROOF. By [4, Chapter 2, §5, in particular p. 74] it is enough to prove the result for primitive \mathfrak{A} . Thus we are in the position of Theorem 1 with $\mathfrak{X}=\mathfrak{A}/J$ for some maximal modular left ideal J in \mathfrak{A} . We denote the quotient norms on \mathfrak{X} obtained from $\| \|$ and $\| \|'$ on \mathfrak{A} by the same symbols. Suppose $\|x_n\| \to 0$ and $\|x_n - y\|' \to 0$ $(x_n, y \in \mathfrak{A})$. Then for each $\xi \in \mathfrak{X}$ we have $\|x_n\xi - y\xi\|' \to 0$. However using Theorem 1 we see that $\|x_n\| \to 0$ implies $\|x_n\xi\|' \to 0$ so that $y\xi = 0$ for each $\xi \in \mathfrak{X}$ and, since the representation is faithful, y = 0. The closed graph theorem [1, p. 37] then shows that the identity map $(\mathfrak{A}, \| \|) \to (\mathfrak{A}, \| \|')$ is continuous and the result follows by arguing with $\| \|$ and $\| \|'$ interchanged.

REFERENCES

- 1. N. Bourbaki, Éléments de mathématique, Espaces vectoriels topologiques, Chapters I-II, Act. Sci. Ind. 1189, Hermann, Paris, 1953.
- 2. ——, Éléments de mathématique, Espaces vectoriels topologiques, Chapters III-V, Act. Sci. Ind. 1229, Hermann, Paris, 1955.
- **3.** N. Jacobson, *Structure of rings*, Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.
- 4. C. E. Rickart, General theory of Banach algebras, Van Nostrand, New York, 1960.

THE UNIVERSITY, NEWCASTLE UPON TYNE, ENGLAND.