THE UNIQUENESS OF THE (COMPLETE)
NORM TOPOLOGY

BY B. E. JOHNSON
Communicated by Richard Arens, March 7, 1967

In this paper we show that every semisimple Banach algebra over
R or C has the uniqueness of norm property, that is we show that if
9 is a Banach algebra with each of the norms || ||, || || then these
norms define the same topology. This result is deduced from a maxi-
mum property of the norm in a primitive Banach algebra (Theorem 1).

In the following F is a field which may be taken throughout as R,
the real field, or C, the complex field. If ¥ is a normed space then
® (%) will denote the space of bounded linear operators on X.

LemMA 1. Let F, G be closed subspaces of the Banach space E such
that F+G=E. Then there exists L >0 such that if x S E then there is an
fE F with

@) [Ifl] = Ll

(il) x—fEQG.

Proor. The map (f, g)—f-+¢ is a continuous map of F®G onto E
and so is open by the open mapping theorem [1, p. 34]. Thus there is
0>0 such that if yEE with Hy” <4 then there are f’, g &G with
7l llg’ll £1 and f'+g’ =2y. The result of the lemma then follows if
we take L =081, y=x||x||-16 and f=f"L|«].

THEOREM 1. Let U be a Banach algebra over F and let X be a normed
space over F. Suppose that X is a faithful strictly irreducible left A-
module and that the maps E—af from % into X are continuous for each
a&EN. Then there exists a constant M such that

llagll” = pllaf [l
for all a €N, £EX, where || -|| is the norm in A and ||-||’ the norm in %.

The theorem asserts that the natural map d—®(¥) is continuous.
It is a much stronger version of [4, Theorem 2.2.7] but applicable
only to primitive algebras. It would be interesting to know how far
it can be generalized.

Proor. If £EX and a—aé(Y—¥%) is continuous then the map a—abd
—abf, being a composition of continuous maps, is continuous. Since
% is strictly irreducible, if £20 we can, by a suitable choice of b, make
b any particular vector in ¥ and so if a—af is continuous for one
nonzero { it is continuous for all £ in ¥. We shall deduce a contradic-
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tion by assuming a—aé continuous only for £ =0 and hence show that
all these maps are continuous. We assume ¥5< {0} since this case is
trivial.

The Y-module % is of infinite dimension over F since otherwise, as
% is faithful, I would be a finite dimensional algebra and any linear
map A—X would be continuous. Since ¥ is a strictly irreducible 9[-
module the norm on ¥ determines a complete norm ||-|| on % [4,
Theorem 2.2.6] and so the centralizer ® of 9 on ¥ is isomorphic with
R, Cor the quarternions [4, Lemma 2.4.4] and in any case is of finite
dimension over F. Since ¥ is of infinite dimension over F it is of infinite
dimension over ©. We can thus choose a linearly independent (over
D) sequence £, &, - - - from ¥ with ||£]]’ =1.

We now show that for each K, >0 and for each positive integer m
there is xE¥ such that

() ||| <e.

(]i), x£1=x£2= L =x£m_1=0.

(iii)’ ||x&n||" > K.

Put J;= {a; a€Ey, a£i=0}, then [3, p. 6, Theorem 2] J; is a maxi-
mal modular left ideal and 7= (JiN\J3 - + - NJTm_1)+Jm is a left ideal
containing J,. Since &, - - -, &, are linearly independent over © we
can find, by the density theorem [3, p. 28], y&U such that y& =y,
= ... =9, 1=0 and y¢,=£,7%0. We have y&I, y& J,, so that T
contains J,, properly and, by maximality of J,,, I =%. Take the num-
ber L given by applying Lemma 1 with E=U, F=J1NJ; - + - NJp,
G =Jn. By the discontinuity of the map x—xé, we can find x,&U
satisfying (i)’ with e replaced by ¢/L and (iii)’. Then, by Lemma 1,
there exists x&Ji1N\Jy - - - NJ 1 (so that (ii)’ holds for x), such
that xo—xEJn (i.e. xokn=xE,) and ||x]] S L||xd| <e.

Now choose, by induction, a sequence xi, Xz, - - - in ¥ such that
@° [lal| <27n.

(11) xngl—' v -xn n..1-—0

({ii)° ||#nkal|’ Zn 4| 2abn+ - - - Fxaibal|’-

Put z;= Zn>1 %,. Since anJi for n>7 and J; is closed in A we see
that z;E J;, that is Z,'lg','=0, and zo=x1+ - - + +x;+2;. Thus

“ZO&HI = “xlfi + -t wd Z.‘E.‘”'
lletd|” — Hxvfz‘ IR ST % |

1,

A\

using (iii)°.
is a bounded linear operator in ¥.
We have shown that (a, £)—aé is continuous (¥, || ”)——)(%, I ”’)
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for each £€¥%. The result of the theorem now follows since we also
have that (a, £)—af is continuous for fixed a (by hypothesis) and so
by [2, p. 38, Proposition 2] (a, £)—af is jointly continuous.

THEOREM 2. Let U be a semisimple algebra over R or C. Let || ||,
| ||” be norms on A such that A, || ||) and &, || ||) are Banach aigebras.
Then the norms || ||, || || define the same topology on 9.

ProoF. By [4, Chapter 2, §5, in particular p. 74] it is enough to
prove the result for primitive %. Thus we are in the position of The-
orem 1 with ¥=9/J for some maximal modular left ideal J in .
We denote the quotient norms on ¥ obtained from || || and || ||’ on
U by the same symbols. Suppose ||#./|—0 and ||x, —|'—0 (xa, yEA).
Then for each £ % we have ||x,& —||'—0. However using Theorem 1
we see that ||x,||—0 implies ||x.£]|’—0 so that y£ =0 for each £€% and,
since the representation is faithful, y=0. The closed graph theorem
[1, p. 37] then shows that the identity map (¥, || [)—(, || ||") is
continuous and the result follows by arguing with || || and || ||’
interchanged.
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