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A theory of noncooperative and cooperative games, that parallels 
the classical theory [ l ] , [2] but makes no use of utility theory, is 
outlined in this note. 

1. Games in normal form. The following definition seems suitable 
for our purpose (see, e.g., [3, § 5]). 

DEFINITION 1.1. An n-person game (in normal form) is a system 
G={N; S\ • • - , ' S» ; X\ • • • , X»; R\ • • • , #*; H\ • • • , ff»}, 
where : 

(1.1) N is a set of n members (the players of G), and for each i £ i V : 
(1.2) Sl is a nonempty set (the set of strategies of player i). 
(1.3) X1 is a nonempty set (the set of outcomes for player i). 
(1.4) Ri(ZXiXXi (the preference relation of player i). 
(1.5) iJ* is a function whose domain is the set S = S1X • • • X 5 n 

and whose range is X* (the payoff function of player i). 

If SGS, 5 = (S1, • • • , sn), and s*ÇiS\ we denote: 

(1.6) s\s{ = (s\ • • • , r - 1 , 5*, si+\ - • • , sn) 

DEFINITION 1.2. Let G = {N; S \ • • • , S»; X1, • • • , Xn; R\ • • • , 

jRw; i?1 , • • • , Hn) be an ^-person game. s £ 5 is an equilibrium point 
for G if for each i £ i V : 

(1.7) (jff<(j J ^0, ff*(*)) $ JRS for all j< G S*. 

This is Nash's definition [2] adjusted to our case. 

2. Finite, noncooperative games. Let 

G = {N;S\ • '-,S";X\ • • ;X»;R\ • • • , *»; tf1, • • • , #"} 

be an w-person game. G is finite if 5* is finite for all i£ iV. The mixed 
extension of1 G is the ^-person game 

where: 

(2.1) N = N, 

In what follows we assume that G is finite. 
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and for each iGN: 
(2.2) S* is the set of all probability distributions on S{ (the mixed 

strategies of player i). 
(2.3) Xi is a set of probability distributions on X\ specifically the 

range of Ê1 (see (2.5)). 
(2.4) E'CfrxX'; and 
(2.5) H{ is a, function which assigns to each sG$ = $lX • • • XSn 

a probability distribution on X\ where the probability of 
H^s1, • • • , sn) according to Ê{(Ê) is 

S A*i) • • * fis"), 

for all s = (s\ • • , 5W)£5. 
I t is clear that each of the sets S1, • • • , Sn

y or jt1, • • • , Xn can be 
considered as a subset of a suitable euclidean space ; this assumption 
will be made from now on. 

THEOREM 2.1. If for each iGN: 
(2.6) The relation Rl is acyclic (see [l, p. 591]); 
(2.7) Rl is open {in the relative topology of XlXXl) ; 
(2.8) if x9 y, zGX\ O^cx^ l , and ay + {\-a)zGXl then: 
(2.8.1) if (pc, y)&Ri and (x, z) ^Rl then (x, ay + (l -a)z)^Ri) and 
(2.8.2) if (y, x)<&Ri and (2, x)C£Rl then (ay + (l-a)z, x)^R\ 
then G has an equilibrium point. 

We shall need the following result [4] in the proof of Theorem 2.1. 

THEOREM 2.2. If for each $GS and f or each iGN a binary relation 
Zl($) is defined on Sl such that'. 
(2.9) Zl(s) is acyclic. 
(2.10) if s*h, s i £S* then {$: (si, sl)GZl(S)} is open (in the relative 

topology of S) ; and 
(2.11) if siGS* and si(si

k)=0 then there exists no s^GS1 such that 

(4,4)ez*(s), 
then there exists So G S such that Zl(So) = 0 for all iGN. 

PROOF OF THEOREM 2.1. For each SGS and for each iGN we 
define a binary relation Zl(S) on Sl by: 

(2.12) ( s L 4 ) G ^ ) ^ ( # ^ | 4 ) , £*(*!$)£# and *<(4)>0. 

The validity of (2.9), (2.10) and (2.11) for Z\S) follows from (2.6), 
(2.7) and (2.12). By Theorem 2.2 there exists SoG§ such that 
Z^so) — 0 for all iGN. We claim that §0 is an equilibrium point for 
G. Let iGN. II 4 (4 ) > 0 then 
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(Ê\So | si), Ê\So I sl)) $ R* for all si G S*. 

Hence, by (2.8.2), (0*(i 0 |*0. ^*(*o| *1))C-^* f o r a11 *'£&• Since 

#*(*>) = E i'o(W(Jo|*I) 
Ufc:sO(sA;)>OÎ 

it follows from (2.8.1) that ( É ^ l * 4 ) , l î ' C S o ) ) ^ ' for all $*£§*. This 
completes the proof. 

We remark that the classical case, where: 
(2.13) each of the relations R} is derived from a complete transitive 

relation "R* CfrxX* by: 

(2.13.1) Ri = { (x, y) : (#, 3/) G R* and (y, a) $ ^*'} Î a n d 

(2.14) there exists a real function (a utility) u{ defined on X1 which 
satisfies: 

(2.14.1) ul(x) è u*(y) <=» (x, y) G R*; and 

(2.14.2) u*(ax + (1 - a)y) = au*{x) +[(1 - a) **(?), for all x, y G %* 

and for all O ^ a ^ l such that ax+(l — a)yE.X\ 

is contained in our result. To see that the inclusion is strict, consider 
the following example : 

EXAMPLE 2.3. Let X be the simplex 

{a: a— (ah a2, a8), ax ^ 0, Ö2 è 0, a3 ^ 0 and #i + a2 + #3 = l}« 

Define a relation ]R by: 
/ 

#a us 
(2.15) (a, a') G R «=» - è -

ai + 2a2 + a% a{ + 2a2 + a3' 
There exists no utility function on X which represents R in the sense 
of (2.14), while the relation R> derived from TL by (2.13.1) satisfies 
(2.6), (2.7) and (2.8). (This example is a modification of an example 
of R. J. Aumann.) 

We plan also to discuss the nonclassical approaches to utility theory 
[5], [3]. 

3. Two-person zero-sum games. In this section we use our nota­
tion to formulate some well-known properties of two-person zero-
sum games (see, e.g., [6, Chapter 4]). Let G= { {1, 2} ; S\ S2; X\ X2; 
jR1, R2', H1, H2} be a two-person game. 

DEFINITION 3.1. G is zero-sum if: 

(3.1) (W(Sl)y W(s2)) GR1^ (H2(s2), H2(Sl)) G R2, for all sh s2 G S. 
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We remark that if both2 R1 and R2 are complete orders then every 
pair of equilibrium points Si and s2 for G are equivalent, i.e., (H1^), 
H2(si)) = (JEJ1(52), H

2(s2)), and interchangeable, i.e., (s}, sf) and (52, s\) 
are also equilibrium points [6, p. 106]. 

4. Cooperative games. An important step towards the liberation 
of the theory of cooperative games from utility theory was made in 
[7]. Pushing it further we define: 

DEFINITION 4.1. An n-person game in characteristic function form 
is a system G= {N; X\ • • • , Xn; R\ • • • , Rn; v} where: 

(4.1) N is a set with n members (the players of G). 
(4.2) for each iÇEN, Xi is a nonempty set (the set of payoffs for 

player i). 
(4.3) for each i £ N, R* C X1 X X{ (the preference relation of player i). 
(4.4) z; is a function which assigns to each subset SÇ^N a set v(S) C.X 

= XXX • • • X l n , (the characteristic j'unction). 

A "dominance relation" can now be defined on X: 
DEFINITION 4.2. Let x = (xl, • • • , xn) a n d ^ = (^1, • • • , yn) belong 

to X. x dominates y via a subset SQ.N if: 

(4.5) xEv(S); and 

(4.6) (x\ y{) £ Ri for all i G S. 

I t is now possible to define solutions [ l ] , the core [8, p. l ] , in­
stable pairs [6, Chapter 10 ] and bargaining sets [9] of a game in a 
characteristic function form. Some other notions, such as value [lO] 
and kernel [ l l ] , might be more difficult to generalize, but still can 
be defined for restricted classes of cooperative games. 

5. Remarks. 
REMARK 5.1. I t is possible to define games in extensive form within 

the framework of our suggested approach (see, e.g., [6, p. 44]). The 
normal form can be obtained from the extensive form, and the char­
acteristic function form from the normal form, as in the classical 
theory. 

REMARK 5.2. The generalization of our definitions to games with 
infinite number of players [12], [13] is straightforward. Actually, 
our definitions 4.1 and 4.2 are contained, at least implicitly, in the 
above references. 

2 By (3.1) it is sufficient to assume that R1 (or R2) is a complete order. 
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