STABLE COMPLEX MANIFOLDS1

BY ALLAN BRENDER²

Communicated by E. Spanier, July 14, 1966

1. T. Van de Ven [3] has recently shown that there exist real 4-dimensional manifolds which admit almost complex structures but admit no complex structures, e.g. $S^1 \times S^3 \# S^1 \times S^3 \# CP(2)$. The purpose of this note is to show that this is an unstable phenomenon.

Let M^n be a C^{∞} *n*-dimensional real manifold without boundary and let τ_M be its tangent bundle. R^k is real Euclidean k-space and C^k is complex k-space.

DEFINITION 1. M^n admits a stable complex structure if $M^n \times R^k$ can be given the structure of a complex analytic manifold for some $k \ge 0$, $n = k \pmod 2$.

Let ξ^m be an *m*-plane bundle over M^n .

DEFINITION 2. A stable complex structure for ξ^m is a reduction of the group of $\xi^m \oplus \epsilon^k$ to U((m+k)/2) for some $k \ge 0$, $m = k \pmod{2}$.

DEFINITION 3. A stable almost complex structure for M^n is a stable complex structure for τ_M .

PROPOSITION. M^n admits a stable complex structure if and only if it admits a stable almost complex structure.

2. It is clear that a stable complex structure carries with it a stable almost complex structure. We show the converse is true.

We can assume M^n is a real analytic manifold. There exists a complex n-dimensional manifold N_c^n (of real dimension 2n) and a real analytic embedding $i: M^n \subset N_c^n$ [4]. Regarding N as a real manifold, it is easy to see from the construction of [4] that $\nu(i)$, the normal bundle of the embedding, is equivalent to τ_M ; i.e., $\tau_N \mid M \approx \tau_M \oplus \tau_M$. Let $U \subset N$ be a tubular neighborhood of M in N and let $r: U \to M$ be the bundle projection (U is identified with the total space of $\nu(i)$). One can construct an open neighborhood, V, of M in $U(M \subset V \subset U \subset N)$ which is a domain of holomorphy [2]. Let $r: V \to M$ be the restriction of $r: U \to M$.

Let ν^{2n+1} be the stable normal bundle to M^n . $\tau_M \oplus \nu^{2n+1} \approx \epsilon^{3n+1}$. τ_M admits a stable complex structure if and only if ν does. Assume now that there is a bundle σ over M with fiber C^m and group U(m)

¹ Research supported in part by the National Science Foundation. These results are contained in the author's doctoral dissertation submitted to the University of California, Berkeley.

² The author wishes to thank Professors Phillip Griffiths and Morris Hirsch for several very helpful conversations.

and an R^{2m} -bundle equivalence $f: \sigma \to \nu \oplus \epsilon^k$, 2n+k+1=2m. We have $r^*\sigma$ over V. By Satz II of [1], we can assume $r^*\sigma$ is a holomorphic vector bundle over V. Let $\Pi: E \to V$ be the bundle projection. Considering E as a real analytic manifold we have

$$egin{aligned} au_E \ M &pprox \Pi^* au_V \ M \oplus \Pi^* r^* \sigma \ M \ &pprox au_V \ M \oplus r^* \sigma \ M \ &pprox au_N \ M \oplus \sigma \ &pprox au_M \oplus au_M \oplus
u \oplus \epsilon^k \ &pprox au_M \oplus \epsilon^{3n+k+1}. \end{aligned}$$

Therefore the embedding $M \subset V \subset E$ has a trivial normal bundle. $M^n \times R^{3n+k+1}$ can now be regarded as an open subset of E and so it inherits the structure of a complex manifold from the complex structure on E. O.E.D.

REFERENCES

- 1. H. Grauert, Analytische Faserungen über hollomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263–275.
- 2. . —, On Levi's problem and the imbedding of real-analytic manifolds, Math. Ann. 68 (1958), 460-472.
 - 3. T. Van de Ven (to appear).
- 4. H. Whitney and F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv. 33 (1959), 132-160.

University of California, Berkeley