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1. Introduction. The research reported on in the present note was 
motivated by the following Proposition (F), due to Ernest Fischer 
([5], see also [4] for an earlier version; actually Fischer proved a 
more general result, but the special case suffices as a point of depar­
ture for our discussion) : 

(F) Let P denote a homogeneous polynomial in si, • • • , zk with com­
plex coefficients. Then every polynomial in Si, • • • , zk has a unique 
representation QP+R where 

/ d d \ 
(1) P*( ; • • • ; )R = 0 

\ dZk dZk / 

Here Q, R denote polynomials in Zi, • • • , Zk and P * denotes the poly­
nomial whose coefficients are the complex conjugates of those of P . 

The proposition (F) underlies various formal schemes for exhibit­
ing a basic set of polynomial solutions of a partial differential equa­
tion. (Compare Horvâth [8], and for the special case P = 2 ? + ^ + ^ 
Hobson [7, Chapter IV]). 

Now, if the word "homogeneous" is suppressed, (F) becomes false, 
since indeed in that Case (1) need not have any nonnull polynomial 
solution. Nevertheless, if we are willing to abandon the realm of 
polynomials (F) can be extended. The clue as to how to proceed is 
provided by Fischer's proof of (F) : he defines in the linear manifold 
of polynomials an inner product with respect to which the operator 
"multiplication by P " and the differential operator P*(d/dsi, • • • , 
d/dzk) are adjoint to one another; the required decomposition is then 
just the orthogonal complement decomposition of the space induced 
by a pair of adjoint operators. Of course, the polynomials do not form 
a (complete) Hilbert space with respect to Fischer's inner product. 
Their completion turns out to be a certain space Fk of entire func­
tions of order two. Within Pfc, (F) is now true also in the case that 
P is not homogeneous, and indeed even for certain entire transcen­
dental functions P , with a suitable interpretation of P*(d/dzi, • • • , 
d/dzk). The extension of Fischer's result to Fk is far more difficult, 
however, than the proof of (F) insofar as the problem in Fk is closely 
intertwined with a series of questions which have no counterpart in 
the polynomial case. These questions concern adjoints of unbounded 
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operators, weighted polynomial approximation of holomorphic func­
tions, and infinite-order differential equations. 

We proceed now to the statement of our main results. Proofs of 
these results have been published in the form of mimeographed notes 
[13], and a revised version of this material is currently being pre­
pared for publication. The physicist V. Bargmann has, independently 
of the preceding considerations, been led to study the spaces Fk (see 
[2]). There is little overlap between Bargmann's work and ours. 

2. Notation and basic definitions. 
2.1. Let Ck denote complex Euclidean fe-space. For points 

z = (zi, • • • , zk) and w = (wi, • • • , Wk) of Ck we denote their inner 
product ]T)Î ZiWi by z -w, and write r2 = | z\2 = z -z. By z we denote the 
fe-tuple (zi, • • • , g*). Ek denotes the set of entire functions in C*, 
f*(z) always denotes the function CI (ƒ(£)) (CI denotes complex con­
jugation), and Fk denotes the set of ƒ££& such that 

(1) ||/||2 = *-*J| /(2)|2exp(-|Z|VF 

is finite. Here the integration is over all of C&, and dV denotes the 
volume element (Lebesgue measure) in C&, considered as a 2fe-dimen-
sional real Euclidean space: 

k h k 

(2) d f = XI dxmdym = H rmdrmddm = Ü dAm , 
m=l m = l ra=l 

(3) zm = xm + iym = rm exp(idm). 

I t will sometimes be convenient to write 

(4) da = 7r-*exp(- | z\2)dV. 

For two functions ƒ, g in Fk we define their inner product 

(5) (f, g) = ƒ ƒ(«) Cl(g(z))da. 

This inner product may be characterized also in the following way. 
Let N (a "multi-index") denote the fe-tuple (tiu • • • , nk) of non-
negative integers and write 

N » i njfc 
25 = 2 i • • • Zk , 

k 

N\ = nil • • • »*!, I JVI = X) ni-

(6) 

(7) 
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We partially order the fe-tuples in the usual way : M ^ N if and only 
if mi^fti, i = l, • • • , k. Then, simple computations show 

(8) (zM, zN) = 0 for M 7* N, 

(9) ||z*||2 = N\ 

In other words, the monomials (Nl)~~ll2zN are orthonormal. This 
could also have been taken as our starting point; defining these 
monomials to be orthonormal one has then a positive definite inner 
product induced on the linear manifold of polynomials in Ek and Fk 

may be defined as the completion of the polynomials in the norm 
given by this inner product. From this it is clear that Fk is a (com­
plete) Hubert space and may also be characterized as the set of 
ƒ = ^aNZN in Ek for which 

(10) | | / | | 2 = I > ! K I 2 

is finite. 
From (10) one deduces that for each w(E.Ck, the linear functional 

f(w) is bounded on Fk. Hence Fk possesses a reproducing kernel 
Kw(z) =K(Zj w) such that 

(12) {f,Kw) = (f(z),K(z,w))=f(w). 

Using the orthonormal monomials as a basis one computes 

(13) Kw{z) = 2D —7 = exp( Xj ZiwA = e"w 

(for further details concerning these basic relations see Bargmann 
[2]; for general background on reproducing kernels see [ l ] ) . 

The relation (13) implies, by a well-known argument 

(14) \f(z)\ =0(exp(rV2)) fGFk. 

From (14) we see that all functions in Fk are of order ^ 2 . And from 
(1) we see that all functions of order < 2 are in Fk, as well as some 
functions of order 2. 

We shall use the symbol ||/||, for all ƒ £ £ * , to denote (ƒ| ƒ(*) | H<T)1'\ 
whether the integral is finite or not. Finally, it will be convenient to 
consider tha t subclass G of Fk consisting of functions <j> satisfying 

(15) \<t>(z) I = 0 (exp(r2/2 - AT)) for every A > 0. 

This condition is equivalent to </>KwÇzFk for all w. 
2.2. Formal adjoints. The definitions in this paragraph are ap­

plicable to any Hubert space with reproducing kernel. For economy 
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of space we preserve however the notations of Fk. Let A be a linear 
operator (in general, unbounded) whose domain of definition includes 
the set L of finite linear combinations of kernel functions, and denote 
by A\ the restriction of A to L. Then A* is a closed extension of A*, 
which we call the formal adjoint of A, and write A*. The function 
g — A*f then satisfies 

(1) g(p) = (ƒ, AKW). 

In the case of Fk, if <j>(z) satisfies 2.1 (15), and (<£ •) denotes the oper­
ator "multiplication by $," the formal adjoint is denoted by <j>*(d/dz), 
and we have 

(2) ^{j)f{z) = Sî{t) C1(*(0)«"IAr. 
When <j> is a polynomial, <j>*(d/dz) coincides with the usual interpreta­
tion of this symbol. 

2.3. Polynomial approximation. Let m denote a positive Borel 
measure on C*> We say that m has the polynomial approximation 
(briefly, p.a.) property if and only if the polynomials are dense in the 
entire functions in the metric of L2(dm). In general, little is known 
about which measures have the p.a. property. Some results in the 
one-variable case may be found in the report of Mergelyan [ l l ] . 

3. Statement of results. 

THEOREM 1. For any </> satisfying 2.1(15), the following five state­
ments are equivalent: 

(i) The measure |</>| Ha has the p.a. property. 
(ii) The orthogonal complement in Fk of the null-space of <j>*(d/dz) is 

the set of fÇzFkfor whichf/<j) is entire. 
(iii) 4>*(d/dz)f(z) = 0 and f/cj> entire imply f = 0. 
(iv) The null-space of </>*(d/dz) is spanned (in the norm topology of 

Fk) by the exponential monomials (i.e. functions of the f or m zNez'a) it 
contains. 

(v) 4>*(d/dz) is the adjoint of (</>•)• 

THEOREM 2. Let <f> be any exponential polynomial (i.e., finite linear 
combination of exponential monomials). Then <j> has the properties 
enumerated in Theorem 1. 

In this case </>*(d/dz) is a differential-difference operator. Property 
(iv) is closely related to the theory of infinite order differential equa­
tions with constant coefficients. (References: Valiron [IS], Muggli 
[l2] for ft = l; Ehrenpreis [3], Malgrange [9] for the many variable 
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case. Our topology is however a different one.) 
Thus far we know of no <f> which satisfies 2.1(15) and does not have 

the properties (i)-(v). We have not, however, been able to extend 
Theorem 2 beyond exponential polynomials except for a few cases: 
(a) <j> has no zeros, (b) some special cases for k = 1, e.g. <fi(z) =sin z/z. 

The main tool in proving Theorem 2 is the following "isometry 
theorem," which is of independent interest. Identities bearing a for­
mal similarity to (1) below have been used by Malgrange [ i l ] , 
Treves [14, Lemma 1.3]. 

THEOREM 3. Let <£, fÇzEu and moreover for every €>0, |$(s) | 
= 0(exp(er2)). Then 

I /à\ I I 2 

Um*( )f(z)\\ 
I \dz/ II (1) lltfll 

Nl 

REMARK. Here ^N)*(d/dz) denotes the formal adjoint of (<£(iV) •)> 
and $m(z) denotes (d/dzi)ni • • • (d/dzk)

nk<l>. (1) is understood to 
imply that if the left side is finite, ƒ belongs to the domain of each 
operator <£w*, and the series on the right converges. 

Results are obtained also concerning the nonhomogeneous equation 

® (2) i>*\K-)m = g(z). 

As is well known, the solution of (2) is intimately associated with the 
condition 

(3) There is a constant S > 0 such that 11 </>ƒ11 ^ S| |ƒ11. 

This is equivalent to asserting that (</> •) has a closed range. 

THEOREM 4. Let <j>(z) be an exponential polynomial with exponents 
a{. Then <j> satisfies (3) if and only if the convex hull of the points ai 
contains the origin of C&. 

If <f> is an exponential polynomial satisfying the last condition we 
have then (in view of Theorem 2) : For every gÇiFk, (2) has a solulion 
ƒ, and indeed a unique solution / 0 which has the additional property 
that it is an entire multiple of </>. This / 0 is also the solution of (2) of 
minimal norm, and is the orthogonal projection of ƒ on the range of 

Theorem 3 enables us to compute the precise lower bound of the 
operator (<£ •) when ^ is a polynomial. For example, when cf> — P 
- ]Cî A w e show: 

INI2è2£||/||* 
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with equality only if ƒ is constant. Hence in Fk the operator inverse 
to the Laplacian has the precise upper bound (2fe)~"1/2. 

We have also, 

THEOREM 5. Let <j>(z) be any "pseudopolynornial," i.e., 

<t>(z) = sî + Z)fi(*2> ' • • **)*î"" 

wherefiÇzFjc-i. Then <f> satisfies (3), with 8 = 1. Hence, if also # £ G , (2) 
has a solution for every gÇz.Fk. 

4. Further questions. We see from Theorem 2 that, if <f> is any 
exponential polynomial, the equation 

(i) **(^)(*/) = o 

together with ƒ £ i**, imply ƒ ̂ 0 . Since the operator <j>*(d/dz), inter­
preted as a differential-difference operator, is meaningfully defined 
for all entire functions, we may ask: does (1) have any nonnull en­
tire solution ƒ ? Tha t the answer is sometimes yes may be seen from 
the following example. Take & = 1, <j>(z) —e2iri* — l. The question is 
then, is there ƒ ̂ 0 of period 2iri which vanishes at the integers. Such 
an ƒ is easily constructed, namely 

(2) ƒ(*) = (1 - e') ft (1 ~ «M)(l ~ <r-*). 
n « l 

I t is easily seen tha t this product converges uniformly on compact 
sets, and so defines an entire function. Moreover | / ( s ) | 
= 0(exp(( l /2 + e)r2)) for every e > 0 , i.e., ƒ "just misses" being in Fk. 

On the other hand, there are certain <j> for which (1) has no non-
null entire solution. We can show this is the case when (i) <f> is a 
homogeneous polynomial, (ii) <j> is a polynomial with at most k non-
vanishing coefficients (e.g., for k = 3 such a polynomial as zft+ZzZz—zl). 
Possibly this is true for all polynomials (in one variable this is trivially 
true). 

We mention one final question : the theorems of this paper establish 
relations between the operator <j>*(d/dz) and the set in Ck where <j> 
vanishes. This suggests the possibility of replacing the set where <j> 
vanishes by the set where \[/ vanishes, where yp is some other entire 
function. Of course then the special role played by the space Fk dis­
appears. A typical problem could be: given <f>, for which entire f une-
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tions $ do we have <t>*(d/dz)(\[/f) = 0, ƒ entire, implies / ^ 0 ? Already 
the case k = 2, </) = zl+2$ presents formidable difficulties (this is essen­
tially the problem of characterizing the level curves of a harmonic 
function; some results have been obtained in [6]). 
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