SELF-EQUIVALENCES OF (n-1)-CONNECTED 2n-MANIFOLDS¹

BY P. J. KAHN

Communicated by J. Milnor, Janauary 31, 1966

1. Introduction and statement of main results. All spaces have basepoints, and all maps of spaces are basepoint-preserving. A self-equivalence of a space X is a homotopy class of homotopy equivalences $X \rightarrow X$. Map-composition induces an operation on the set of self-equivalences of X, making it into a group, $\mathcal{E}(X)$.

Arkowitz and Curjel [1] and Weishu Shih [7] have obtained certain general results about $\mathcal{E}(X)$ by studying the Postnikov decomposition of X. More recently P. Olum [5] presented an explicit computation of $\mathcal{E}(X)$ in the case that X is a pseudo-projective plane.

Our results concern the structure of $\mathcal{E}(X)$ in the case that X is a closed, compact, oriented, C^{∞} , (n-1)-connected 2n-manifold, $n \ge 2$. We place these restrictions on X throughout the rest of this paper. Our methods are dual to those of [1] and [7] in the sense that we proceed by examining a cell-decomposition of X.

A word about notation: X_n is the *n*-skeleton of X in some fixed, minimal CW-decomposition of X, SX_n is its suspension, and $\pi(SX_n, X)$ is the group of homotopy classes of maps $SX_n \rightarrow X$.

THEOREM 1. There is an exact sequence,

$$\pi(SX_n, X) \xrightarrow{(Sb)^* + \overline{\psi}} \pi_{2n}(X) \xrightarrow{\rho} \varepsilon(X) \xrightarrow{R} \varepsilon(X_n),$$

the homomorphisms of which will be described in §2.

It is easy to show that $\pi_{2n}(X)$ is finite.

COROLLARY TO THEOREM 1. Kernel R is finite.

 X_n is a one-point union of (at least two) *n*-spheres, so that $H_n(X_n) = H_n(X)$ is finitely generated free abelian. Moreover, it is easy to show that the homology functor H_n takes $\mathcal{E}(X_n)$ isomorphically onto the group of automorphisms of $H_n(X)$. We call this automorphism group $\operatorname{Aut}(H_n(X))$.

Let $\mu: H_n(X) \otimes H_n(X) \to Z$ be the integral bilinear form determined by the intersection pairing on $H_n(X)$. Wall [8] shows that μ , together with a certain function $H_n(X) \to \pi_{2n-1}(S^n)$, completely deter-

¹ This work was partly supported by NSF grant GP 3685.

mines the homotopy type of X. For algebraic convenience, we modify this function slightly, obtaining a homomorphism c on $H_n(X)$, which together with μ also determines the homotopy type of X. We do not define c here.

Let $\operatorname{Aut}(\mu, c)$ be the subgroup of $\operatorname{Aut}(H_n(X))$ consisting of all automorphisms that preserve c and that, up to sign, preserve μ .

THEOREM 2. The functor H_n maps image R isomorphically onto $Aut(\mu, c)$.

THEOREM 3. Aut(μ , c) is finitely generated. If n is even and μ is a definite quadratic form, or if n is even and μ has rank two and index zero, then Aut(μ , c) is finite. Otherwise, Aut(μ , c) is infinite.

Combining Theorems 2 and 3 with the fact that kernel R is finite, we obtain the following:

COROLLARY TO THEOREM 3. Theorem 3 holds for $\mathcal{E}(X)$ in place of $\mathrm{Aut}(\mu,c)$.

Let $\mathfrak{D}(X)$ be the subgroup of $\mathfrak{E}(X)$ consisting of all classes represented by diffeomorphisms $X \rightarrow X$.

THEOREM 4. Suppose that $n \equiv 2 \pmod{4}$, $n \neq 2$. There is a number k, depending only on n and on rank $(H_n(X))$, such that the index of $\mathfrak{D}(X)$ in $\mathfrak{E}(X)$ is less than k.

COROLLARY TO THEOREM 4. Under the above restriction on n, Theorem 3 holds for $\mathfrak{D}(X)$ in place of $\mathrm{Aut}(\mu, c)$.

EXAMPLES.

(a) Let $\mathbb{C}P^n$ be complex projective *n*-space. Using the exact sequence of Theorem 1, together with well-known facts about the homotopy type of $\mathbb{C}P^2$, it is easy to calculate that $\mathbb{C}(\mathbb{C}P^2)\cong \mathbb{Z}_2$.

Indeed, an easy but unrelated argument shows that $\mathcal{E}(CP^n) \cong \mathbb{Z}_2$, for all $n \geq 1$.

(b) Let KP^n be quaternion projective *n*-space. Using Theorem 1 again, together with certain accessible but less well-known facts about the homotopy type of KP^2 , one may calculate that $\mathcal{E}(KP^2) \cong \mathbb{Z}_2$.

In contrast to the above example, however, image R here is trivial. This implies:

PROPOSITION 1. Every homotopy equivalence $f: KP^n \rightarrow KP^n$, $n \ge 2$, induces the identity automorphism of cohomology.

(c) We determine $\mathcal{E}(S_1^n \times S_2^n)$, $n \ge 2$. In this case, X_n is the one-point union $S_1^n \vee S_2^n$. We need some notation:

i is the homotopy class of the inclusion $S_1^n \lor S_2^n \to S_1^n \times S_2^n$;

 e_l is the element of $\pi_n(S_1^n \vee S_2^n)$ represented by the inclusion of S_l^n onto S_l^n , l=1, 2;

x is the homotopy class of the Hopf map $S^3 \rightarrow S^2$, $S^{n-2}x$ its (n-2)-fold suspension;

 ι_n is the homotopy class of the identity map $S^n \rightarrow S^n$;

 $[\alpha, \beta]$ is the Whitehead product of homotopy classes α and β ;

 Δ_8 is the dihedral group of order eight, a group on two generators a and b satisfying $a^4 = b^2 = ab^{-1}ab = 1$;

Sym is the group of integral 2×2 matrices generated by

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad (cf., [3]);$$

 Δ will be the image of the homomorphism $(Sb)^* + \overline{\psi}$ of Theorem 1.

PROPOSITION 2. (i) Δ is trivial if n=2, 6 or $n\equiv 3\pmod 4$. Otherwise $\Delta\cong Z_2\oplus Z_2$ and is generated by

$$i \circ e_1 \circ [S^{n-2} x, \iota_n]$$
 and $i \circ e_2 \circ [S^{n-2} x, \iota_n]$.

- (ii) If n is odd, image $R \cong Sym$, whereas if n is even, image $R \cong \Delta_8$.
- (iii) The following sequence is split-exact:

$$0 \to \pi_{2n}(S_1^n \times S_2^n)/\Delta \xrightarrow{\rho} \mathcal{E}(S_1^n \times S_2^n) \xrightarrow{R} \text{image } R \to 0.$$

The action of Sym or Δ_8 on $\pi_{2n}(S_1^n \times S_2^n/\Delta)$ can be computed explicitly, so that in the range of values of n for which $\pi_{2n}(S^n)$ is known, $n \ge 2$, $\mathcal{E}(S_1^n \times S_2^n)$ can be completely determined.

(d) We present an example of a (4k-1)-connected 8k-manifold $M, k \ge 2$, such that the index of $\mathfrak{D}(M)$ in $\mathcal{E}(M)$ is ≥ 8 .

Choose any of the manifolds M constructed in [4] such that (i) M is homotopically equivalent to $S_1^{4k} \times S_2^{4k}$; (ii) the Pontrjagin class $p_k(M) = ae_1^* + be_2^*$, where $0 \neq a \neq \pm b \neq 0$ and e_i^* is the generator of $H^{4k}(M)$ corresponding, via the given homotopy equivalence, Poincaré duality, and the Hurewicz isomorphism, to the homotopy class e_l described in (c), l=1, 2.

It is easy to show that, of all the members of image $R \cong \Delta_8$, only the identity induces an automorphism of cohomology that keeps $p_k(M)$ fixed. Since diffeomorphisms induce cohomology isomorphisms that keep Pontrjagin classes fixed, $R(\mathfrak{D}(M))$ is trivial, from which the result follows.

2. Description of the homomorphisms and of the proof of Theorem 1.

DEFINITION OF $R: \mathcal{E}(X) \to \mathcal{E}(X_n)$. R(f) is the homotopy class of the restriction to X_n of any cellular representative of f. J. H. C. Whitehead's Cellular Approximation Theorem implies that R is well-defined.

DEFINITION of $\rho: \pi_{2n}(X) \to \mathcal{E}(X)$. As a CW-complex, $X = X_n \cup e^{2n}$, where the cell e^{2n} is attached to X_n by a map $b: S^{2n-1} \to X_n$. Therefore, we may identify X with the reduced mapping cone of b. Pinching together all points halfway up the cone, we obtain $S^{2n} \vee X$ and a projection $\pi: X \to S^{2n} \vee X$. Given any $a: S^{2}_n \to X$, it determines a map $(a \vee 1) \circ \pi: X \to X$, where 1 is the identity map of X. Passing to homotopy classes, the association $a \to (a \vee 1) \circ \pi$ determines the homomorphism ρ (cf. [1], and [2, p. 179]).

DEFINITION OF $(Sb)^*$: $[SX_n, X] \rightarrow \pi_{2n}(X)$. $b: S^{2n-1} \rightarrow X_n$ is the attaching map of e^{2n} , as above, Sb is its suspension, and $(Sb)^*$ is determined by right composition with Sb.

DEFINITION OF ψ : $[SX_n, X] \rightarrow \pi_{2n}(X)$. We introduce notation analogous to that of example (c), above:

i is the homotopy class of the inclusion $X_n \subset X$;

 e_k is the homotopy class of the inclusion of S^n onto the kth sphere of the one-point union of n-spheres X_n ;

 $S\alpha$ is the suspension of α , and $[\alpha, \beta]$ is the Whitehead product of α, β ;

 (Γ_{lk}) is the unimodular matrix determined by the cup product of $H^*(X)$ with respect to the basis of $H^n(X) = \operatorname{Hom}(H_n(X), Z)$ dual to $\{e_1, e_2, \cdots\} \subset \pi_n(X_n) = H_n(X_n) = H_n(X)$. Then, we define $\overline{\psi}$ by

$$\psi(x) = \sum_{l,k} \Gamma_{lk}[x \circ Se_l, i \circ e_k].$$

 ψ arises roughly because of the failure of right composition with b to determine a homomorphism $\pi(X_n, X) \rightarrow \pi_{2n-1}(X)$.

REMARKS ON THE PROOF OF THEOREM 1. The proof of Theorem 1 is an easy obstruction-theoretic exercise until one gets to proving exactness at $\pi_{2n}(X)$. At this point it is necessary to characterize a certain obstruction set (see [2, p. 185]). It is not at all difficult to show that this set is *some* homomorphic image of $[SX_n, X]$. The difficulty lies in showing that the homomorphism is $(Sb)^* + \bar{\psi}$.

The arguments in this proof can be generalized. However, in general, image R will not have so simple a description as that supplied by Theorem 2.

Bibliography

- 1. M. Arkowitz and C. Curjel, The group of homotopy equivalences of a space, Bull. Amer. Math. Soc. 70 (1964), 293-296.
 - 2. Sze-tsen Hu, Homotopy theory, Academic Press, New York, 1959.
- 3. L. K. Hua and I. Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. 65 (1949), 415-426.
- 4. P. J. Kahn, Characteristic numbers and oriented homotopy type, Topology 3 (1965), 81-95.
- 5. P. Olum, Self-equivalences of pseudo-projective planes, Topology 4 (1965), 109-127.
- 6. D. Puppe, Homotopiemengen und ihre induzierten Abbildungen. I, Math. Z. 69 (1958), 299-344.
- 7. Weishu Shih, On the group &[X] on homotopy equivalence maps, Bull. Amer. Math. Soc. 70 (1964), 361-365.
- 8. C. T. C. Wall, Classification of (n-1)-connected 2n-manifolds, Ann. of Math. (2) 75 (1962), 163–182.

CORNELL UNIVERSITY

THE SOLUTION BY ITERATION OF LINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES¹

BY F. E. BROWDER AND W. V. PETRYSHYN

Communicated December 20, 1965

Let X be a Banach space (real or complex), T a bounded linear operator from X to X. We are concerned with the solution of the equation

$$(1) u - Tu = f,$$

by the iteration process of Picard-Poincaré-Neumann,

(2)
$$x_{n+1} = Tx_n + f$$
 (x₀ given),

i.e. with the convergence of the sequence

$$x_n = T^n x_0 + (f + Tf + \cdots + T^{n-1}f).$$

By an earlier result of the first-named author (Browder [2]), if X is reflexive, a solution u for the equation (1) will exist for a given element f of X and an operator T which is asymptotically bounded (i.e. $||T^k|| \le M$ for some M > 0 and all $k \ge 1$) if and only if the sequence $\{x_n\}$ is bounded for any fixed x_0 . Our object in the present paper is to

¹ The preparation of this paper was partially supported by NSF Grant GP-3552.