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This work is a continuation of [2], In [2] we studied the cohomol-
ogy groups Hq(X\A, 0) where A(QX) is a closed generalized poly-
disc. Here we consider the general case where A is the closure of a 
domain of holomorphy. This general case was treated in [l ] for g = 1, 
but the present method (for g ^ l ) is entirely different. 

We adopt the definition in [4] of analytic polyhedron. By an 
analytic polyhedron in general position we mean an analytic poly­
hedron as defined in [3, p. 288]. 

THEOREM 1. Let A(ZCn be the closure of a bounded analytic poly­
hedron in general position and let X be any open set in Cw, containing A. 
Then the restriction map 

(1) #*(X, 0) ^ H«(X\A, 0) (1 S q ^ n - 2) 

is bijective. 

We proceed as in [2] except that now we take G=*B\A where 
B={zED; /y(s)GAy for j = l, • • • , N} where A is defined by 
A= \zÇzD\/y(s)£Ay for j = l, • • • , N) where/y are holomorphic in 
£>, Ay is some open neighborhood of Ây, and B C D. (The argument in 
[2] can be simplified by dropping out the sets Uiv • • • , U%q which 
occur in the covering X\A.) All we need to prove is the following 
lemma. 

LEMMA. H*>(G, 0 )=O for l^p^n-2. 

PROOF. For simplicity we take Ay to be the unit disc and Ay to be 
a disc with radius 1 + e, homothetic to Ay. Clearly G = Uf^i Ui where 
Ui is defined as B except for the additional condition |/*(:s)| > 1 . 
Thus, each Z7* is also an analytic polyhedron. We next proceed 
analogously to [6, p. 349] and represent fi0...ip in U"=n*li 17»* as 
X)Ciif(/»v-»p) where M== {M\ M") is a set of indices j i , • • • , j n 

such that the integration in CMU) is taken over |/yx| ==71, • • • , |/yn| 
=yn where 7^ = 1 if jhÇzM" and 7^ = 1 + 6 if jhÇzM'; the above in­
tegral representation is that given by the Cauchy-Weil formula [3], 
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[7]. Actually we should have used the representation in compact 
subsets of U, bu t since this does not affect all the arguments below, 
we simplify the notation by representing ƒ»•„.••», in U. 

One verifies tha t (a) if iÇzM",i($z {u, • • • ,ip} then CM(fi0..-ip) =0* 
Indeed this follows by the Cauchy-Poincaré theorem [3, p. 264] ap­
plied in the (n + 1)-dimensional set defined by |/y| = l + e for jGAf', 
|fj\ = 1 iorjEM"\{i}9 and \ft\ g l . Since p + Kn, it follows from 
(a)that( |8)Cjf(/<0 . . .< f)=OifJlf / ,«{l>2, • • • ,»} .Next , ( T ) C M ( / < 0 . . . 0 
is holomorphic in Z7<0...t-p = nj-o ^*> since, by (a), we may assume 
tha t Af"C{*'o, • • • , *p}. Finally, (8) if *$Af" then C*(f«0.--<,-i) is 
holomorphic in Z7 tv»y-r To construct g with 8 g = / (ƒ any given 
^-cocycle) it suffices to construct, for each fixed M, g with 8g = CM(J)* 
We may assume that there is an i(£M", l^i^n, since otherwise 
CM(J) = 0 by (j8). We then take 2v--<p-i = ctf(/W--<,-i)-

COROLLARY 1. If N=n in Theorem 1 then there is a surjective map 
(1) also for q — n. If, further, X is a domain of holomorphy, then 
Hn^(X\A,e)^0. 

The first part follows by observing that Hn(G, 0) = 0 and using the 
Mayer-Vietoris sequence (see [0, p. 236]) for B, X\A. If the second 
part is false then Hq(X\A, 0) = 0 for 1 Sq^n. Employing Dolbeault's 
theorem and [5, Theorem 4.2.9] it follows that X\A is a domain of 
holomorphy. 

THEOREM 2. Let A^ftjLx Xj where Xy_OXy, X3- is a bounded do­
main of holomorphy in Cn and A is a closed set, and let X be any open 
set in Cn, containing A, Then the restriction map (1) is bijective for 
lHkqûn — 2 and infective for q = n. 

PROOF. Each Xj can be exhausted by a sequence of analytic poly-
hedra with N = n (see [4, p. 218]), and by slightly modifying the 
domains in which the values of the functions (defining the analytic 
polyhedron) lie, we get a sequence of analytic polyhedra in general 
position. Thus we can write A =riyli Py where Pj are analytic poly­
hedra in general position, and P,-~iD?y. Take a covering W of X\A 
by domains of holomorphy such tha t for each j = l, 2, • • • , there is 
a subset of W which is a covering of X \ F / and such that the closure 
of each set in W does not intersect dA. Using Leray's lemma [4] and 
the fact that the restriction maps 

(2) &(X9 0) -> H'(X\Ph 0) (r = q, q - 1) 

are bijective (for any l^q^-n — 2) it follows by the isomorphisms 
Hr(X\Fif 6)->(Hr(X\Pj-1e)) and [0, p. 241 and p. 250] that the map 
(1) is bijective we actually need only the injectivity of (2) for r = q 
and the surjectivity of (2) for r = q, q — 1. 
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EXAMPLE. If A is a compact convex set, or if dA is C2 and strictly 
pseudoconvex, then A satisfies the assumptions in Theorem 2. If, in 
particular, X is a domain of holomorphy, then Hq(X\A, 0 ) = 0 for 
l^q^n-2. 

Added in proof. Theorems 1, 2 remain true if 0 is replaced by any 
coherent analytic sheaf SF over x, free in a neighborhood of A. Assume 
now that ^ has a free resolution of length din a neighborhood of dA. 
Then the lemma holds for l^p^n— 2— d. Using a covering of x\A 
as in [2] and, additionally, a domain of holomorphy U* containing A 
but not intersecting the Uj (or j = iQ, • • • , iqy we get: 

THEOREM 3. If A, X are as in Theorem 2 and if ïï is as above, then 
the restriction map (1), with 0 replaced by SF, is bijectivefor 2Sq^n--2--d. 

This theorem yields the following result on cohomology with compact 
support: H$(Çl, 50=0 for 2Sq$>n — l—d> if £2 is a domain of holo­
morphy in Cn. (Overlapping results were proved, by a different 
method, in [o], using Serre's duality theorem.) 

PROOF FORJF = 0 : Given a d-closed q-îormf, with compact support 
in Ö, solve dg=f in C"; then solve dv = g outside some compact 
analytic polyhedron in Q, (using Theorem 3). u = v — d(Çv), for some 
ÇeCÏ? satisfies du—f and has compact support in Q. For general $ we 
work with g-cochains and coboundary operators. The above proof, 
together with #2(fi, 0) 5^0, leads to: 

COROLLARY. If Q is a domain of holomorphy and a star domain, and 
if B is any open set with ÖCCG, then J?W~1(A^» 0) ^ 0 -
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