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The problem treated in this paper is roughly the inversion of 
elliptic systems of singular integral equations in a half-space of Rn. 
Ellipticity means that the system is invertible over the whole of Rn, 
in our case explicitly. We first introduce notation and some spaces 
of (vector-valued) distributions. 

Let O, y) denote points in Rn with x£-R n~\ yGR. Rn+[Rn-] is the 
half-space y^O [y^O], H8>p is the space of distributions u for which 

N|..p = l l ^ a + Ul2 + I*)«*M\L' < °°-
Here (Fu)(^ rj) =fu(x, y)ei^x'^y'ri) dxdy> with (£, rj) dual to (x, 3;). We 
assume Kp < 00. Hsiv is the subspace of elements supported in Rt. 
H8>p(R%) is the quotient H8>p/Hsip (it is a space of distributions on 
jR+, the open half-space). Y+ denotes the canonical map onto the 
quotient and || F+w||s,p is the quotient norm. i î + \ H8>P(R!L) and F_ 
are similarly defined. For s = 0, we can identify H±P = L± with 
LP(R?±), and Y± with multiplication by the characteristic function of 
i£±. The definitions above extend to vector valued functions com­
ponent-wise. 

Let ikf(£, 77) be an NXN matrix of functions, positively homogene­
ous of degree 0, Cl+1 on |£|2+rç2 = l where l>n/2. The operator 
M=F-1M(%, rf)F (whose symbol is ikf(£, 77)) is bounded in H8>p, in­
vertible (elliptic) if det [M(£, r?)]^0 for (§, r / )^0 . 

THEOREM A. The operator M: u—>(Y-.u, Y+Mu) has a closed range 
in H8tP(R!L)XH8'p(Rn

+) for every s except at most N exceptional values 
of s(mod 1). There exists k'^k" such that for s=k+a nonexceptional 

N U g C[\\ Y_u\\8,p + || F+M«||. iP], all u G E'"\ h^V, 

Z ± I N U P ' ^ C| |7 . + 2OT+IU,', all V± E HTv'kSk"; 

kn = kf in the scalar case. 

The first estimate means tha t M is 1-1 and has a closed range. The 
second ("dual") estimate assures that the range of M is full. Thus as 
5—>+ 00 the operator M becomes left invertible, as s—>•— 00 it be­
comes right invertible. 

1 This work was supported in part by grant GP-3940 from the National Science 
Foundation. 
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We proved those estimates before for n = l and general M [ó], 
or M = J (the identity matrix) and general n [7]. In the latter case 
the exceptional values are s = l/p (mod 1). (This is so whenever 
ikf(0, 1) =M(Q, —1).) In fact, Theorem A shows that M for general 
M behaves pretty much like ?. 

Theorem A follows from : 

THEOREM B. The operator Y+u-*Y+MY+u has a closed range in 
LP(B!\.) if and only if the eigenvalues of Af(0, — 1) • M""l(fl9 1) do not lie 
on the ray arg X = 2ir/p. Let 

(1) MM, V) = (V - i | £ | )*Jf ft, V)(V + i \t | )-*. 

There are integers k\ "k" such that Y+M8Y+ is 1-1 if fej^fe', onto if 
k^k" {provided Y+MY+ has a closed range). 

REMARK. The estimates of Theorem A settle the problem of ob­
taining a priori Lp estimates for elliptic partial differential equa­
tions in n + 1 dimensional domains with piecewise smooth boundary 
operators (so called "mixed" problems). These (usually L2) estimates 
were obtained before under very special conditions [3], [4], [5] 
and [8]. 

METHOD OF PROOF. For Theorem B, we first prove the following 
reduction : 

LEMMA 1. Let Mi = F~lM(l, rjl^-^F. Then estimate 

\\Y+u\\ ^ C\\Y+MY+u\\, UEL* 

(norms are LP(R\) norms) is equivalent to the family of estimates 

|| Y+u\\ g C\\ F+MIF+tf||, u G L», 

for all | satisfying 11| = 1 . 

The operators M\ are easier to study since their symbols are essen­
tially one-dimensional. As usual with this type of problem, one tries 
to factor the symbol into product of matrices holomorphic in I m rj>0 
and Im 77 <0. Here it suffices to factor ikf(|, 77) for fixed £ and then 
substitute 771J I""1 for 77. We use results of Gohberg-Krein [l] , [2]. 
They factor matrices of the form I+K(rj) where K(rj)E:FLl (or a 
suitable subring, cf. [l]). Thus we first have to "fill in" the jump of 
M(l77) at infinity in case M(0, l)=itf (£, oo)^M(l -<»)=Af(0, - 1 ) . 
If the jump matrix 

(2) M(0, — l)-ikf-1(0, - 1 ) is similar to diag [Xi, • • • , \N], 

this is readily done by diagonal factors of the form 
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(3) (v ± %Y = diag [fo ± 0 ' , • • • , 6? ± i)a] 

where cr = (o,i, • • • , <») is iV-tuple of fractional (may be complex) 
numbers determined by Xi, • • • , X^. Indeed Mi( | , rj) =(77—i)-* 
M(i, rj)(rj+iy has the same value at ± 00 and is factorizable. Factor­
ing it, we get for Af(|, rj) 

LEMMA 2. For a fixed £ 5^0 we have (suppressing the dependence 
on I): 

(4) M (I n) = Ql\v) fa - if ( ^ A \ n + i)-*Q+(ri) 
\rj + %/ 

where Q+(rj) [Q-(rj)] an^ ^s inverse are bounded and smooth f or real rç, 
have holomorphic extension to Im ) />0 [Im rj<0]. Moreover, their 
derivatives decrease as \ rj | —> oo in a manner which assures that Q±(rj | £ | - 1 ) 
and their inverses are Lv-multipliers, K = (KI, • • • , KN) is a noninct'eas­
ing sequence of integers which are uniformly bounded f or 11| = 1 . 

REMARK. If (2) is not satisfied, the factorization of M is more 
complicated but the final results remain unchanged. 

LEMMA 3. Let Q± = F~lQ±(ri\ ?| ~l)F and 

(5) DK+, = F-Kv -i\t\y(nZ%\*})'<n + *'l *l )~*F-

Then Q+ sets an isomorphism between the null-spaces of Y+MçY+ and 
Y+DK+ffY+. Q_ sets an isomorphism between the ranges of these opera­
tors in L*(Rn+). 

Notice tha t DK+ff is a direct sum of scalar operators for which we 
have 

LEMMA 4. If k is an integer and —l + l/p<Re <r^l/p then the 
(scalar) operator Y+DK+<r Y+ has a closed range if and only ifRea^l/p. 
In this case it is 1-1 if fe^O, onto if fe^O. 

The proof of Theorem B follows now quite easily from Lemmata 
1-4; for Theorem A we need two more. Let us denote 

/ l = F_ 1b±i(i + UI2)1/2]V-
LEMMA 5. JL maps H8>p(Rn+) onto H*-ttP(Rn

+) (in particular onto 
LP(R\) if s~t) and || F+/Lw||,-«,1,^'|| F+w||t. (Similar statement with 
+ and — interchanged.) 

LEMMA 6. The following estimates are equivalent 
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N U £ C[\\ Y-*\\'-P + II 7*M«\\:p]> u G H*'P> 
\\v\\o,P â cfli F^||O,P +1 | F + / : M / ; ^ | | O , P ] , I» G LP , 

|| F+H|0i, =S C|| F+W.F+4 9 G J> (cf. (1)), 

Z ± IWU*>' ^ C||7_ + Ar7+m,p,, F± G #~*>P'. 
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