WIENER-HOPF TYPE PROBLEMS FOR ELLIPTIC SYSTEMS OF SINGULAR INTEGRAL EQUATIONS¹

BY ELIAHU SHAMIR

Communicated by F. Browder, February 2, 1966

The problem treated in this paper is roughly the inversion of elliptic systems of singular integral equations in a half-space of \mathbb{R}^n . Ellipticity means that the system is invertible over the whole of \mathbb{R}^n , in our case explicitly. We first introduce notation and some spaces of (vector-valued) distributions.

Let (x, y) denote points in \mathbb{R}^n with $x \in \mathbb{R}^{n-1}$, $y \in \mathbb{R}$. $\mathbb{R}^n_+[\mathbb{R}^n_-]$ is the half-space $y \ge 0$ $[y \le 0]$. $H^{s,p}$ is the space of distributions u for which

$$||u||_{s,p} = ||F^{-1}(1+|\xi|^2+\eta^2)^{s/2}Fu||_{L^p} < \infty.$$

Here $(Fu)(\xi,\eta) = \int u(x,y)e^{i(x,\xi+y-\eta)}\,dxdy$, with (ξ,η) dual to (x,y). We assume $1 . <math>H^{s,p}$ is the subspace of elements supported in R^n_- . $H^{s,p}(R^n_+)$ is the quotient $H^{s,p}/H^{s,p}_-$ (it is a space of distributions on \mathring{R}^n_+ , the open half-space). Y_+ denotes the canonical map onto the quotient and $\|Y_+u\|_{s,p}$ is the quotient norm. $H^{s,p}_+$, $H^{s,p}(R^n_-)$ and Y_- are similarly defined. For s=0, we can identify $H^{0,p}_\pm = L^p_\pm$ with $L^p(R^n_\pm)$, and Y_\pm with multiplication by the characteristic function of R^n_\pm . The definitions above extend to vector valued functions component-wise.

Let $M(\xi, \eta)$ be an $N \times N$ matrix of functions, positively homogeneous of degree 0, C^{l+1} on $|\xi|^2 + \eta^2 = 1$ where l > n/2. The operator $M = F^{-1}M(\xi, \eta)F$ (whose symbol is $M(\xi, \eta)$) is bounded in $H^{s,p}$, invertible (elliptic) if det $[M(\xi, \eta)] \neq 0$ for $(\xi, \eta) \neq 0$.

THEOREM A. The operator $\tilde{\mathbf{M}}: u \rightarrow (Y_-u, Y_+\mathbf{M}u)$ has a closed range in $H^{s,p}(\mathbb{R}^n_-) \times H^{s,p}(\mathbb{R}^n_+)$ for every s except at most N exceptional values of $s \pmod{1}$. There exists $k' \geq k''$ such that for $s = k + \sigma$ nonexceptional

$$||u||_{s,p} \leq C[||Y_{-u}||_{s,p} + ||Y_{+}Mu||_{s,p}], \quad all \ u \in H^{s,p}; \ k \geq k',$$

$$\sum_{\pm} ||V_{\pm}||_{-s,p'} \leq C||V_{-} + MV_{+}||_{-s,p'}, \quad all \ V_{\pm} \in H_{\pm}^{-s,p'} k \leq k'';$$

$$k'' = k' \ in \ the \ scalar \ case.$$

The first estimate means that \tilde{M} is 1-1 and has a closed range. The second ("dual") estimate assures that the range of \tilde{M} is full. Thus as $s \to +\infty$ the operator \tilde{M} becomes left invertible, as $s \to -\infty$ it becomes right invertible.

¹ This work was supported in part by grant GP-3940 from the National Science Foundation.

We proved those estimates before for n=1 and general M [6], or M=I (the identity matrix) and general n [7]. In the latter case the exceptional values are $s=1/p \pmod{1}$. (This is so whenever M(0, 1) = M(0, -1).) In fact, Theorem A shows that \tilde{M} for general M behaves pretty much like \tilde{I} .

Theorem A follows from:

THEOREM B. The operator $Y_+u \rightarrow Y_+MY_+u$ has a closed range in $L^p(\mathbb{R}^n_+)$ if and only if the eigenvalues of $M(0, -1) \cdot M^{-1}(0, 1)$ do not lie on the ray $\text{arg } \lambda = 2\pi/p$. Let

$$(1) M_k(\xi,\eta) = (\eta - i | \xi |)^k M(\xi,\eta) (\eta + i | \xi |)^{-k}.$$

There are integers k', k'' such that $Y_+M_*Y_+$ is 1-1 if $k \ge k'$, onto if $k \le k''$ (provided Y_+MY_+ has a closed range).

REMARK. The estimates of Theorem A settle the problem of obtaining a priori L^p estimates for elliptic partial differential equations in n+1 dimensional domains with piecewise smooth boundary operators (so called "mixed" problems). These (usually L^2) estimates were obtained before under very special conditions [3], [4], [5] and [8].

METHOD OF PROOF. For Theorem B, we first prove the following reduction:

LEMMA 1. Let
$$M_{\bar{\xi}} = F^{-1}M(\bar{\xi}, \eta | \xi |^{-1})F$$
. Then estimate $||Y_+u|| \le C||Y_+MY_+u||, \quad u \in L^p$

(norms are $L^p(\mathbb{R}^n_+)$ norms) is equivalent to the family of estimates

$$||Y_{+}u|| \leq C||Y_{+}M_{\tilde{\xi}}Y_{+}u||, \quad u \in L^{p},$$

for all ξ satisfying $|\xi| = 1$.

The operators $M_{\bar{\xi}}$ are easier to study since their symbols are essentially one-dimensional. As usual with this type of problem, one tries to factor the symbol into product of matrices holomorphic in Im $\eta > 0$ and Im $\eta < 0$. Here it suffices to factor $M(\bar{\xi}, \eta)$ for fixed $\bar{\xi}$ and then substitute $\eta |\xi|^{-1}$ for η . We use results of Gohberg-Krein [1], [2]. They factor matrices of the form $I+K(\eta)$ where $K(\eta) \in FL^1$ (or a suitable subring, cf. [1]). Thus we first have to "fill in" the jump of $M(\bar{\xi}, \eta)$ at infinity in case $M(0, 1) = M(\bar{\xi}, \infty) \neq M(\bar{\xi}, -\infty) = M(0, -1)$. If the jump matrix

(2)
$$M(0, -1) \cdot M^{-1}(0, -1)$$
 is similar to diag $[\lambda_1, \dots, \lambda_N]$,

this is readily done by diagonal factors of the form

(3)
$$(\eta \pm i)^{\sigma} = \operatorname{diag} \left[(\eta \pm i)^{\sigma}, \cdots, (\eta \pm i)^{\sigma} \right]$$

where $\sigma = (\sigma_1, \dots, \sigma_N)$ is N-tuple of fractional (may be complex) numbers determined by $\lambda_1, \dots, \lambda_N$. Indeed $M_1(\bar{\xi}, \eta) = (\eta - i)^{-\sigma} M(\bar{\xi}, \eta)(\eta + i)^{\sigma}$ has the same value at $\pm \infty$ and is factorizable. Factoring it, we get for $M(\bar{\xi}, \eta)$

LEMMA 2. For a fixed $\xi \neq 0$ we have (suppressing the dependence on ξ):

(4)
$$M(\xi, \eta) = Q_{-}^{-1}(\eta)(\eta - i)^{\sigma} \left(\frac{\eta - i}{\eta + i}\right)^{\kappa} (\eta + i)^{-\sigma} Q_{+}(\eta)$$

where $Q_{+}(\eta)$ $[Q_{-}(\eta)]$ and its inverse are bounded and smooth for real η , have holomorphic extension to Im $\eta > 0$ [Im $\eta < 0$]. Moreover, their derivatives decrease as $|\eta| \to \infty$ in a manner which assures that $Q_{\pm}(\eta |\xi|^{-1})$ and their inverses are L^p -multipliers. $\kappa = (\kappa_1, \dots, \kappa_N)$ is a nonincreasing sequence of integers which are uniformly bounded for $|\xi| = 1$.

REMARK. If (2) is not satisfied, the factorization of M is more complicated but the final results remain unchanged.

LEMMA 3. Let $Q_{\pm} = F^{-1}Q_{\pm}(\eta |\xi|^{-1})F$ and

(5)
$$D_{\kappa+\sigma} = F^{-1}(\eta - i \mid \xi \mid)^{\sigma} \left(\frac{\eta - i \mid \xi \mid}{\eta + i \mid \xi \mid}\right)^{\sigma} (\eta + i \mid \xi \mid)^{-\sigma} F.$$

Then Q_+ sets an isomorphism between the null-spaces of $Y_+M_{\xi}Y_+$ and $Y_+D_{x+\sigma}Y_+$. Q_- sets an isomorphism between the ranges of these operators in $L^p(R_+^n)$.

Notice that $D_{\kappa+\sigma}$ is a direct sum of scalar operators for which we have

LEMMA 4. If k is an integer and $-1+1/p < \text{Re } \sigma \leq 1/p$ then the (scalar) operator $Y_+D_{\kappa+\sigma}Y_+$ has a closed range if and only if $\text{Re } \sigma \neq 1/p$. In this case it is 1-1 if $k \geq 0$, onto if $k \leq 0$.

The proof of Theorem B follows now quite easily from Lemmata 1-4; for Theorem A we need two more. Let us denote

$$J_{\pm}^{t} = F^{-1} [\eta \pm i(1 + |\xi|^{2})^{1/2}]^{t} F.$$

LEMMA 5. J_{-}^{t} maps $H^{s,p}(R_{+}^{n})$ onto $H^{s-t,p}(R_{+}^{n})$ (in particular onto $L^{p}(R_{+}^{n})$ if s=t) and $||Y_{+}J_{-}^{t}u||_{s-t,p}\sim ||Y_{+}u||_{s}$. (Similar statement with + and - interchanged.)

LEMMA 6. The following estimates are equivalent

$$||u||_{s,p} \leq C[||Y_{-u}||_{s,p} + ||Y_{+}Mu||_{s,p}], \quad u \in H^{s,p},$$

$$||v||_{0,p} \leq C[||Y_{-v}||_{0,p} + ||Y_{+}J_{-}^{s}MJ_{+}^{-s}v||_{0,p}], \quad v \in L^{p},$$

$$||Y_{+}v||_{0,p} \leq C||Y_{+}M_{s}Y_{+}v||, \quad v \in L^{p} \quad (\text{cf. (1)}),$$

$$\sum_{\pm} ||V_{\pm}||_{-s,p'} \leq C||V_{-} + MV_{+}||_{-s,p'}, V_{\pm} \in H^{-s,p'}.$$

BIBLIOGRAPHY

- 1. I. C. Gohberg, Factorization problems in normed rings, Uspehi Mat. Nauk 19 (1964) 71-124.
- 2. I. C. Gohberg and M. G. Krein, Systems of singular integral equations in half line, Uspehi Mat. Nauk 13 (1958), 3-72.
- 3. J. Peetre, Mixed problems for higher order elliptic equations in two dimensions. I, Ann. Scuola Norm. Sup. Pisa (3) 15 (1961), 337-353; II, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 1-12.
- 4. M. Schechter, Mixed problems for higher order elliptic partial differential equations, Comm. Pure Appl. Math. 13 (1960), 407-425.
- 5. E. Shamir, Mixed boundary value problems for elliptic equations in the plane. The L_p theory, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 117-138.
- 6. —— Reduced Hilbert transforms and singular integral equations, J. Analyse Math. 12 (1964), 227-305.
- 7. ——, Une propriété des espaces H^{o,p}, C. R. Acad. Sci. Paris, 255 (1962), 448-449.
- 8. I. M. Višik and G. I. Eskin, General boundary value problems with discontinuous conditions at the boundary, Dokl. Akad. Nauk SSSR 158 (1964),15 = Soviet Math. Dokl. 5 (1964), 1154.

NORTHWESTERN UNIVERSITY