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1. Introduction. Let us consider non-negative integers (numbers),
collections of numbers (sets) and collections of sets (classes). The
letters € and o stand for the set of all numbers and the empty set of
numbers respectively. We write C for inclusion, proper or improper.
A mapping from a subset of e into € is called a function; if f is a func-
tion, we denote its domain and its range by 8f and pf respectively. Let
a class of mutually disjoint nonempty sets be called an md-class; such
a class is therefore countable, i.e., finite or denumerable. We recall
that the recursive equivalence type (abbreviated: RET) of a set «,
denoted by Req(a), is defined [1, p. 69] as the class of all sets which
are recursively equivalent to . We wish to consider the problem:
“How can we define the RET of an md-class in a natural manner?”
Throughout this note .S stands for an md-class and ¢ for the union of
all sets in .S; for every x&o we denote the unique set a such that
xEaES by a..

DEFINITIONS. A set v is a choice set of S, if

1) vCo,

(2) v has exactly one element in common with each set in S.
The set v is a good choice set of S (abbreviated: gc-set), if it also
satisfies

(3) there exists a partial recursive function p(x) such that ¢ Cép
and (Wx) [xEo=p(x) Ev-a.].

Consider the special case that the md-class S is a finite class of
finite sets. Then

(a) every choice set of S is a good choice set,

(b) every two choice sets of S are recursively equivalent,

(c) every two good choice sets of .S are recursively equivalent.

If the md-class .S is infinite, (a) and (b) need no longer be true.
For let S contain infinitely many sets of cardinality =2, e.g.,
S=((0, 1), (2, 3), (4,5), - - - ). Then S has ¢ choice sets. Every good
choice set of S has the form (o) for some partial recursive function
p(x), hence S has at most N good choice sets and (a) is false. Every
nonzero RET contains exactly 8, sets; the ¢ choice sets of S can
therefore not all be recursively equivalent and (b) is false. On the

1 This paper was written while the author was supported by a grant from the Rut-
gers Research Council.
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other hand, (c) still holds. For we have

ProrosiTION P1. Every two good choice sets of an md-class are recur-
sively equivalent.

Note that (a) does not even hold for every finite class consisting
of two infinite sets. For let S=(7, '), where 7 and 7’ are comple-
mentary immune sets. Then S has denumerably many choice sets,
but if S had a good choice set, 7 and 7’ would be recursive. For every
md-class S we write {(S) for the class of all gc-sets of S. If {(S) is
nonempty, S is called a gec-class. The class (r, 7) mentioned above is
an example of an md-class which is not a gc-class. P1 enables us to
give the

DEeFiNiTION. For any gc-class S,

RET(S) = Req(y), for any v € {(S).

If Sis a finite md-class of finite sets, S is a gc-class and RET(.S)
equals the cardinality of .S. We need not exclude the trivial case that
S is empty, for then {(S) contains exactly one set, namely o.

2. Elementary properties. The sets a, - - - , o, are separable if there
exist mutually disjoint r.e. sets B, - * +, Ba such that o;CpB; for
0=<i=<n. We write ao|a if @ and a; are separable.

ProrosiTiON P2. The finite md-class S= (o, - * * , o) 15 @ ge-class
if and only if a, + + -, an are separable; if S is a ge-class, each choice
set of S is a gc-set and RET(S) equals the cardinality of S.

A gc-class is called 4solated if each (or equivalently, at least one)
of its gc-sets is isolated. In other words, a gc-class is isolated if its
RET is an isol. For every nonempty gc-class S we have: ¢ is a finite
set if and only if S is a finite class of finite sets. Similarly,

ProposiTiON P3. Let S be a nonempty ge-class. Then o is an isolated
set if and only if S is an isolated class of isolated sets.

Two classes S; and S; with unions ¢, and o2 respectively are sepa-
rable if 01| 02. For any two classes 4 and B we write

AX B={jlaXB)|a€ 4 and g € B},

where j(x, y) =x+(x+y)(x+y+1)/2.

ProrositioN P4. Let S; and S: be separable md-classes. Then Si\JS,
is an md-class and

(@) SI\JUS; is a ge-class if and only if both S: and S: are gc-classes,

b) of SIUS; is a ge-class, RET(S1\J.S;) =RET(S:) +RET(S,).
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ProrositioN P5. Let Sy and S; be nonempty md-classes. Then Sy X S;
1s a nonempty md-class and

(@) S1X.S: is a ge-class if and only if both Sy and S, are gc-classes,

(b) ’L:f S;[XSz s a gc-class, RET(51XSZ) =RET(S;[) RET(Sz).

3. The class Bin(a). Let {pn} be the canonical enumeration of the
class of all finite sets [2, p. 81] and 7, =cardinality of p,. For any
set « and any number k we write

Cla, k) = {n| pn C @ and 7, = k}, Bin(a) = {C(a, k)| & = 1}.

Note that Bin(a) is an md-class for any set «; if « is a finite set of
cardinality #, the members of Bin(a) are separable and Bin(a) is a
gc-class with # as cardinality and RET. For any infinite set o,
Bin(«) is a denumerable md-class of infinite sets; the next proposition
tells us when Bin(a) is a gc-class. We write Req(e) =R and refer to
[2, pp. 80, 84] for the definition of a regressive set and a regressive
isol.

ProposiTION P6. Let o be infinite and A = Req(a). Then

(@) if a has an infinite r.e. subset, Bin(a) is a ge-class of RET R,
(b) if a is a regressive set, Bin(a) is a gc-class of RET A,

() if a is immune, but not regressive, Bin(a) is not a ge-class.

It follows that among the ¢ existing md-classes of immune sets,
exactly ¢ are ge-classes and exactly ¢ are not. It is shown in [3] that
though the collection Az of all regressive isols is not closed under
addition one multiplication, one can extend the min(x, y) function from
€? into € in a natural manner to a min(X, ¥) function from A% into
Ar. However, min(X, ¥) need no longer assume one of the values X
and Y.

ProrosiTiON P7. Let «, B be two nonempty isolated sets, A= Req(c)
B=Req(B) and

S = {j(éxn)l (am)[n =1 and £ = C(a, n) and 4 = C(B, n)] }

If a and B are regressive, i.e., A, BEAg then S is a ge-class with RET(S)
=min(4, B).

It can be shown that .S may be a gc-class while the sets « and 8 are
immune, but not both regressive.

4. Characterization of gc-classes.
DEerFINITIONS. Let p(x) be a partial recursive function and S a
gc-class. Then p(x) is a ge-function of S, if
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() 0 Cdp and p(a) EL(S),

B) (Wx) [xEo=p(x)Ep(0) -],

(v) pp Cop and (¥x) [xEdp=p%(x) =p(x)].

A gc-function is a partial recursive function which is a ge-function of
at least one gc-class.

Every gc-class has at least one gc-function. For if a partial recur-
sive function p(x) is related to S by () and (B8), then p(x) has a re-
striction which satisfies («), () and (y). With every partial recursive
function p(x) we associate the md-class Gen(p) = {p’l(y)| yEpp} of
r.e. sets. This md-class is empty if and only if p(x) is nowhere defined.

ProrosiTiON P8. A partial recursive function p(x) is a ge-function
if and only if it satisfies (v). Moreover, if p(x) satisfies (), it is a gc-
function of the class S=Gen(p) with o=206p and p(o) =pp&EL(S).

ProrosiTiON P9. Let p(x) be a ge-funciion of the ge-class S. Then
8p = a8 = Gen(p).

DEeFINITION 1. A class S is primative, if it satisfies one of the three
conditions: (i) S is empty, (ii) Sis a nonempty, finite md-class of r.e.
sets, (ili) S is a denumerable md-class of r.e. sets and there exists a
recursive function a(#, x) such that if a,, =pa(n, x), then S consists of
the distinct sets ao, ay, - -

DEeriNITION II. A class S is primitive, if it is a gc-class with a gc-
function p(x) such that S=Gen(p).

DeriniTION I11. A class S is primitive, if S=Gen(p) for some par-
tial recursive function p(x).

ProrositioN P10. The three definitions of a primitive class are equiv-
alent.

CoRrROLLARY. 4 cdlass S is primitive if and only if it is a ge-class with
a ge-function p(x) such that §p=o.

DEerFINITION. An md-class T is a restriction of the gc-class S, if
(a) for every BET, there is an ag such that B CasE.S,
(b) there is a yE{(S) such that ET=y-as CpB.

ProrosiTION P11. An md-class is a ge-class if and only if it is a
restriction of some primitive gc-class.

While there are ¢ gc-classes, only N, of them are primitive. For
each RET A4 there exists a gc-class with 4 as its RET, but a primi-
tive class can only have one of 0, 1, - -+ -, R as its RET. The gc-sets
of a primitive class P are readily characterized. For if P is finite, the
gc-sets of P are the choice sets of P, and if P is infinite, say
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P = (O‘O; Qg * ot ); Qp = Pa(n) x))

a(n, x) a recursive function, then yE{(p) if and only if y=pa(fa, %),
for a recursive permutation f, and a recursive function %,. Finally, the
restrictions of any given primitive class can be simply described. Thus
Proposition P11 serves a purpose.
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