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1. Introduction. Let us consider non-negative integers (numbers), 
collections of numbers (sets) and collections of sets (classes). The 
letters e and o stand for the set of all numbers and the empty set of 
numbers respectively. We write C for inclusion, proper or improper. 
A mapping from a subset of e into € is called a, function; if ƒ is a func­
tion, we denote its domain and its range by ôf and pf respectively. Let 
a class of mutually disjoint nonempty sets be called an md-class; such 
a class is therefore countable, i.e., finite or denumerable. We recall 
that the recursive equivalence type (abbreviated: RET) of a set a, 
denoted by Req(a), is defined [l, p. 69] as the class of all sets which 
are recursively equivalent to a. We wish to consider the problem: 
"How can we define the RET of an md-class in a natural manner?" 
Throughout this note S stands for an md-class and a for the union of 
all sets in S\ for every x£<r we denote the unique set a such that 
xÇîaÇzS by ax. 

DEFINITIONS. A set 7 is a choice set of 5, if 
(1) 7 O , 
(2) 7 has exactly one element in common with each set in S. 

The set 7 is a good choice set of S (abbreviated: gc-set), if it also 
satisfies 

(3) there exists a partial recursive function p(x) such that a Cap 
and (\fx)[x(E.<r=$p(x)CE:y'<Xx]' 

Consider the special case that the md-class S is a finite class of 
finite sets. Then 

(a) every choice set of S is a good choice set, 
(b) every two choice sets of S are recursively equivalent, 
(c) every two good choice sets of 5 are recursively equivalent. 
If the md-class 5 is infinite, (a) and (b) need no longer be true. 

For let S contain infinitely many sets of cardinality ^ 2 , e.g., 
5 = ((0, 1), (2, 3), (4, 5), • • • ). Then S has c choice sets. Every good 
choice set of 5 has the form p(o~) for some partial recursive function 
p(x), hence 5 has at most fcSo good choice sets and (a) is false. Every 
nonzero R E T contains exactly fc<o sets; the c choice sets of S can 
therefore not all be recursively equivalent and (b) is false. On the 

1 This paper was written while the author was supported by a grant from the Rut­
gers Research Council. 
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other hand, (c) still holds. For we have 

PROPOSITION P I . Every two good choice sets of an mâ-class are recur -
sively equivalent. 

Note that (a) does not even hold for every finite class consisting 
of two infinite sets. For let S—(r, T')> where r and r ' are comple­
mentary immune sets. Then 5 has denumerably many choice sets, 
but if 5 had a good choice set, r and r' would be recursive. For every 
md-class S we write f (S) for the class of all gc-sets of S. If f (S) is 
nonempty, S is called a gc-class. The class (r, r') mentioned above is 
an example of an md-class which is not a gc-class. PI enables us to 
give the 

DEFINITION. For any gc-class 5, 

RET(5) = Req(7), for any y G f (S). 

If S is a finite md-class of finite sets, 5 is a gc-class and RET(5) 
equals the cardinality of 5. We need not exclude the trivial case that 
S is empty, for then f (5) contains exactly one set, namely o. 

2. Elementary properties. The sets a0, • • • , an are separable if there 
exist mutually disjoint r.e. sets j8o, • • • , |8n such that oLiQfii for 
0<^i<^n. We write ao|«i if «o and a\ are separable. 

PROPOSITION P2. The finite md-class S=^(aoi • • • , an) is a gc-class 
if and only if CXQ, • • • , an are separable ; if S is a gc-class, each choice 
set of S is a gc-set and RET(S) equals the cardinality of S. 

A gc-class is called isolated if each (or equivalently, at least one) 
of its gc-sets is isolated. In other words, a gc-class is isolated if its 
R E T is an isol. For every nonempty gc-class 5 we have : a is a finite 
set if and only if 5 is a finite class of finite sets. Similarly, 

PROPOSITION P3. Let S be a nonempty gc-class. Then a is an isolated 
set if and only if S is an isolated class of isolated sets. 

Two classes Si and 52 with unions <X\ and <r2 respectively are sepa­
rable if <TJ | o-2. For any two classes A and B we write 

A X B = {j(a X « | a G A and 0 G B}, 

where j(x, y) =x+(x+y)(x+y + l)/2. 

PROPOSITION P4. Let Si and 52 be separable md-classes. Then S1US2 
is an md-class and 

(a) Si^JS2 is a gc-class if and only if both Si and S2 are gc-classes, 
(b) if S1KJS2 is a gc-class, RET(SJJSt)=RET(Sà+RET(S%). 
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PROPOSITION P5. Let Si and S2 be nonempty md-classes. Then S1XS2 
is a nonempty mà-class and 

(a) *5i X S% is a gc-dass if and only if both Si and S% are gc-classes, 
(b) if S1XS2 is a gc-class, RET(SiXS2) =RET(Si) -RET(S2). 

3. The class Bin (a). Let {pn} be the canonical enumeration of the 
class of all finite sets [2, p. 81] and rn = cardinality of pn. For any 
set a and any number k we write 

C(a, k) = {n I pn C a and rn = k}, Bin(a) = {C(a, k) \ k è l } . 

Note that Bin (a) is an md-class for any set a; if a is a finite set of 
cardinality n} the members of Bin(a) are separable and Bin(a:) is a 
gc-class with n as cardinality and RET. For any infinite set a> 
Bin (a) is a denumerable md-class of infinite sets; the next proposition 
tells us when Bin(a) is a gc-class. We write Req(e) —R and refer to 
[2, pp. 80, 84] for the definition of a regressive set and a regressive 
isol. 

PROPOSITION P6. Let a be infinite and A =Req(a). Then 
(a) if a has an infinite r.e. subset, Bin(a) is a gc-class of RET R, 
(b) if ais a regressive set, Bin(a) is a gc-class of RET A, 
(c) if a is immune, but not regressive, Bin(a) is not a gc-class. 

It follows that among the c existing md-classes of immune sets, 
exactly c are gc-classes and exactly c are not. It is shown in [3] that 
though the collection A# of all regressive isols is not closed under 
addition one multiplication, one can extend the min(x, y) function from 
e2 into e in a natural manner to a min(X, Y) function from A# into 
AjR. However, min(X, F) need no longer assume one of the values X 
and F. 

PROPOSITION P7. Let a, /3 be two nonempty isolated sets, A = Req(a) 
B = Req((3) and 

S = [ƒ(£ X v) \ (3»)[ » ^ 1 and { = C(a, n) and v = C(p, »)] }. 

If a and ]8 are regressive, i.e., A, BÇZAR then S is a gc-class with RET(S) 
= min04, B). 

I t can be shown that 5 may be a gc-class while the sets a and /3 are 
immune, but not both regressive. 

4. Characterization of gc-classes. 
DEFINITIONS. Let p(x) be a partial recursive function and S a 

gc-class. Then p{x) is a gc-function of S, if 
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(a) (7Cô£and£(<r)er (S) , 
(0) (Vx) [xe<r=*p(x) ep(a) -ax], 
(7) p £ C ô £ a n d (\/x)[x£i8p=$p2(x) =p(x)]. 

A gc-function is a partial recursive function which is a gc-function of 
at least one gc-class. 

Every gc-class has at least one gc-function. For if a partial recur­
sive function p(x) is related to S by (a) and (/3), then p(x) has a re­
striction which satisfies (a), (j3) and (7). With every partial recursive 
function p(x) we associate the md-class Gen(£)= {p~l(y)\yE:Pp} of 
r.e. sets. This md-class is empty if and only if p(x) is nowhere defined. 

PROPOSITION P8. A partial recursive function p(x) is a gc-function 
if and only if it satisfies (7). Moreover, if p(x) satisfies (7), it is a gc-
function of the class S = Gen(p) with cr^=8p and p(o) =pp£:Ç{S). 

PROPOSITION P9. Let p(x) be a gc-function of the gc-class S. Then 

$p = ar&S = Gen(p). 

DEFINITION I. A class S is primitive, if it satisfies one of the three 
conditions: (i) 5 is empty, (ii) 5 is a nonempty, finite md-class of r.e. 
sets, (iii) 5 is a denumerable md-class of r.e. sets and there exists a 
recursive function a(n, x) such that if an — pa(n, x), then 5 consists of 
the distinct sets «o, ai, • • • . 

DEFINITION II . A class 5 is primitive, if it is a gc-class with a gc-
function p(x) such that S=Gen(p). 

DEFINITION I I I . A class S is primitive, if S = Gen(p) for some par­
tial recursive function p(x). 

PROPOSITION P10. The three definitions of a primitive class are equiv­
alent. 

COROLLARY. A class S is primitive if and only if it is a gc-class with 
a gc-function p(x) such that 8p = <r. 

DEFINITION. An md-class T is a restriction of the gc-class S, if 
(a) for every / 3 £ r , there is an a$ such that PdoipCzS, 
(b) there is a 7 E ? ( S ) such that ft£T=*yafiCP-

PROPOSITION P l l . An md-class is a gc-class if and only if it is a 
restriction of some primitive gc-class. 

While there are c gc-classes, only fc^o of them are primitive. For 
each R E T A there exists a gc-class with A as its RET, but a primi­
tive class can only have one of 0, 1, • • • , R as its RET. The gc-sets 
of a primitive class P are readily characterized. For if P is finite, the 
gc-sets of P are the choice sets of P , and if P is infinite, say 
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P = («o, ai, • • • ), an = pa(n} x), 

a(n, x) a recursive function, then yÇîÇ(p) if and only if 7 = pa(/n , un), 
for a recursive permutation fn and a recursive function wn. Finally, the 
restrictions of any given primitive class can be simply described. Thus 
Proposition P l l serves a purpose. 
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