PERIODIC MAPS WHICH PRESERVE A COMPLEX STRUCTURE

BY P. E. CONNER AND E. E. FLOYD Communicated March 2, 1964

1. Introduction. A weakly complex structure for a differentiable manifold M is, roughly, a structure for the stable tangent bundle of M as a complex vector space bundle; a map $T: M \rightarrow M$ is weakly complex if the differential dT is stably complex linear. We consider weakly complex maps $T: M \rightarrow M$, periodic of period p (usually p is prime). We study such problems as the relationship between M, F and the normal bundle to F.

There are two basic technical tools. First we study the complex bordism groups $\mathfrak{U}_n(X)$ of a space X, as a generalized homology theory. For B_{Z_p} a classifying space for the group Z_p , $\mathfrak{U}_n(B_{Z_p})$ is identified with the bordism group of weakly complex maps $T \colon M \to M$ of prime period p, operating on a closed manifold M without fixed points. The second technical tool is the theory of G-bundles $E \to B$ where a compact Lie group H acts on E as a group of bundle maps.

This work is a supplement to our previous study of periodic maps [1], and the methods are a continuation of those. A sample of the results here were given in our Seattle lectures [2]; Zelle has also studied aspects of weakly complex actions in his thesis [6]. A full account of our results will appear later.

2. The complex bordism groups. Given a bundle ξ of real 2k-planes over a space X, a complex prestructure for ξ is a map J mapping each fiber of ξ linearly into itself and having $J^2 = -1$. A complex structure for ξ is a homotopy class of such prestructures; denote by $C(\xi)$ the set of complex structures. Denote by kI the trivial k-plane bundle $R^k \times X \to X$. For X a finite dimensional CW complex and for ξ a bundle of real n-planes over X, a weakly complex structure for ξ is an element of $C((2k-n)I+\xi)$, $2k-2 \ge \dim X$; in an appropriate sense, this is independent of k.

A weakly complex manifold is a pair consisting of a differentiable manifold M and a weakly complex structure on the tangent bundle of M. The boundary of a weakly complex manifold is weakly complex; each weakly complex manifold has a uniquely defined negative.

Given a pair (X, A) of spaces, consider all pairs (M, f) where M is a weakly complex compact n-manifold and where $f: (M, \partial M) \rightarrow (X, A)$. Two such, (M_1, f_1) and (M_2, f_2) , are bordant if there exists

a weakly complex compact (n+1)-manifold W and a map $F: W \rightarrow X$ such that

- (i) disjoint copies of M_1 and $-M_2$ are contained as smooth submanifolds of ∂W with weakly complex structure induced from that of ∂W ,
- (ii) $F | M_i = f_i$ and $F(\partial W (M_1 \cup M_2)) \subset A$. Bordism is an equivalence relation; denote the equivalence class represented by (M, f) by $[M, f]_U$ or simply by [M, f]. The set $\mathfrak{U}_n(X, A)$ of all equivalence classes is the *complex bordism group* of (X, A); in Milnor's notation this would be $\Omega_n^U(X, A)$, and Atiyah's notation would be $MU_n(X, A)$. There is $\partial: \mathfrak{U}_n(X, A) \to \mathfrak{U}_{n-1}(A)$ given by $\partial[M, f] = [\partial M, f | \partial M]$. If $\phi: (X, A) \to (Y, B)$, $\phi_*: \mathfrak{U}_n(X, A) \to \mathfrak{U}_n(Y, B)$ is given by $\phi_*[M, f] = [M, \phi f]$. Let $\mathfrak{U}_*(X, A) = \sum \mathfrak{U}_n(X, A)$.

 $\{\mathfrak{U}_*(X,A),\partial,\phi_*\}$ is a generalized homology theory; that is, it satisfies the Eilenberg-Steenrod axioms except for the dimensional axiom. The coefficient group $\mathfrak{U}_*(\text{point})$ is the Milnor bordism ring \mathfrak{U}_* (in his notation, Ω_*^U), where \mathfrak{U}_n consists of all bordism classes [M] of closed weakly complex n-manifolds. \mathfrak{U}_* is a polynomial algebra over Z with a generator in each positive dimension 2k.

There is the Milnor spectrum

$$MU: \cdots, MU(k), SMU(k), MU(k+1), \cdots$$

where MU(k) is the Thom space of the universal U(k)-bundle, and where the map $S^2MU(k) \rightarrow MU(k+1)$ is given by Milnor [4]. In the following, the homology theory of a spectrum is due to G. W. Whitehead [5].

(2.1) On the category of CW pairs, the complex bordism homology theory is isomorphic to the homology theory of the spectrum MU; we have

$$\mathfrak{U}_n(X, A) \cong H_n(X, A; MU) = \pi_{n+2k}(MU(k) \wedge (X/A)),$$

k large.

There is a spectral sequence $\{E_{p,q}^r\}$ with $E_{p,q}^2 = H_p(X, A; \mathfrak{U}_q)$ and whose E^{∞} -term is associated with a filtration of $\mathfrak{U}_*(X, A)$. There is also a homomorphism $\mu: \mathfrak{U}_n(X, A) \to H_n(X, A)$ given by $\mu[M, f] = f_*(\sigma)$ where $\sigma \in H_n(M, \partial M)$ is the orientation class (a weakly complex manifold has a natural orientation).

(2.2) For (X, A) a CW pair, the spectral sequence associated with $\mathfrak{U}_*(X, A)$ is trivial iff $\mu \colon \mathfrak{U}_*(X, A) \to H_*(X, A)$ is an epimorphism. If $H_*(X, A)$ has no torsion, then μ is an epimorphism. Given a set $\{[M_i, f_i]\}$ of homogeneous elements of $\mathfrak{U}_*(X, A)$ such that $\{\mu[M_i, f_i]\}$ is a basis for $H_*(X, A)$, then $\mathfrak{U}_*(X, A)$ is a free \mathfrak{U}_* -module with base $\{[M_i, f_i]\}$.

3. Preliminaries on weakly complex actions. Let the compact Lie group H act differentiably on the compact differentiable manifold M; then H also acts on the tangent bundle $\xi \colon E \to M$ via the differentials dh, $h \in H$. There is a Riemannian metric on M invariant under the action of H; the exponential map $\exp \colon E \to M$ is then equivariant. If W is a compact smooth submanifold of M, invariant under H, then exp maps a normal cell bundle E_{ϵ} diffeomorphically and equivariantly onto a tubular neighborhood N of W in M. Hence we may identify N with the cell bundle, and the action becomes an action by bundle maps. If F = F(H, M) is the set of stationary points of the action, then F is a finite disjoint union of smooth submanifolds of M; we treat it as if it were a manifold. The tubular neighborhood N of F is of the above type.

If $\xi : E \to M$ is the tangent bundle to M, then H acts on the Whitney sum $(2k-n)I+\xi$ as a group of bundle maps, acting trivially on the first coordinate. An *invariant* complex prestructure J on $(2k-n)I+\xi$ is a prestructure which commutes with the action of H. An *invariant complex structure* is a homotopy class of such prestructures.

A weakly complex action of the compact Lie group H on the differentiable manifold M is a pair consisting of a differentiable action of H on M and an invariant weakly complex structure for the action. We regard the stable tangent bundle $(2k-n)I+\xi$ as a complex vector space bundle, and the differentials dh as complex linear.

(3.1) Consider a weakly complex action of H on M, where J is the invariant prestructure on the stable tangent bundle $(2k-n)I+\xi$. The restriction $(2k-n)I+\xi_F$ to the stationary point set F splits into the stable tangent bundle $(2k-n)I+\xi'$ to F and the normal bundle η to F in M, and each is invariant under J. Hence F is a weakly complex manifold and the normal bundle η to F is a unitary bundle, with H acting on η as a group of complex linear bundle maps.

Consider now a tubular neighborhood N of the set F of stationary points of a weakly complex action. On the one hand, N receives an invariant weakly complex structure by restriction of that of M. On the other hand, F is weakly complex and the normal bundle η to F is unitary. The stable tangent bundle ξ of N splits as the sum of the stable normal bundle ξ' to the fiber and the tangent bundle η' along the fiber. Now ξ' receives a weakly complex structure from F, and η' from the unitary structure of η . Hence N receives a second invariant weakly complex structures coincide. Hence the weakly complex action of H on N is determined completely by the weakly complex manifold F, the normal bundle η to F with its unitary structure, and the action of H on η .

4. Weakly complex maps of prime period. Consider a free, weakly complex action of a finite group H on a closed n-manifold M; denote the pair by (H, M). There is a natural equivariant bordism group of such pairs; denote the bordism class represented by (H, M) by $[H, M]_U$ or simply by [H, M]. Given a pair (H, M), then M/H is weakly complex and $M \rightarrow M/H$ is a principal H-bundle. Letting $f: M/H \rightarrow B_H$ be a classifying map for the principal H-bundle, we receive an element $[M/H, f] \in \mathfrak{U}_n(B_H)$. There results an isomorphism of the bordism group of free weakly complex actions with $\mathfrak{U}_n(B_H)$; we identify the two. The \mathfrak{U}_* -module structure of $\mathfrak{U}_*(B_H)$ is given by letting [H, M][M'] denote $[H, M \times M']$ where H acts on $M \times M'$ by h(x, y) = (hx, y).

In the remainder of this section consider $H = Z_p$, p a prime. An action of Z_p is equivalent to a map $T: M \to M$ of period p; we use either $[Z_p, M]$ or [T, M] for the element of $\mathfrak{U}_*(B_{Z_p})$.

Consider first a weakly complex map $T: M \to M$, on a closed manifold, of period p, where T has fixed points. If B is the boundary of a tubular neighborhood N of the fixed point set F, then T on B gives a free action of Z_p and [T, B] = 0 in $\mathfrak{U}_*(B_{Z_p})$. In this way we get relations in $\mathfrak{U}_*(B_{Z_p})$.

Let η be the normal bundle to F and let η' be the Whitney sum of a trivial complex line bundle and η . An action of Z_p on the line bundle is given by multiplication by exp $2\pi i/p$; the diagonal action gives an action of Z_p on η' . Let B' be the sphere bundle of η' , and let $T': B' \rightarrow B'$ be the periodic map resulting from the action of Z_p on η' .

(4.1) If $T: M \rightarrow M$ is a weakly complex map of prime period p and if B' is as above, then $[T', B'] = [T_1, S^1][M]$ in $\mathfrak{U}_{n+1}(B_{\mathbb{Z}_p})$, where $T_1(z) = (\exp 2\pi i/p) \cdot z$.

The proof is similar to [1, Theorem 35.1]. We can go on to analyze $\mathfrak{U}_*(B_{Z_p})$ as in [1]. For each S^{2n-1} , pick a unitary $T\colon S^{2n-1}\to S^{2n-1}$ of period p and without fixed points. Then $\{[T,S^{2n-1}]\}$ generates the reduced group $\mathfrak{U}_*(B_{Z_p})$ as a \mathfrak{U}_* -module. Moreover $[T,S^{2n-1}]$ is of order p^{k+1} where 2k(p-1) < 2n-1 < 2(k+1)(p-1). $[T,S^{2k(p-1)+1}]$ is of particular interest. Here $p^k[T,S^{2k(p-1)+1}]=b[T_1,S^1][P_{p-1}(C)]^k$, where $b\neq 0 \mod p$. The explicit additive structure of $\mathfrak{U}_*(B_{Z_p})$ is obtained.

Perhaps the most interesting feature in the complex case is the case p=2, which is completely different from the oriented bordism situation. Consider $\mathfrak{A}_*(B_{Z_2})=\mathfrak{A}_*(P_\infty(R))$, or alternatively the bordism theory of fixed point free weakly complex involutions. The generators are $[T, S^{2n-1}]$ where T is the antipodal map, $[T, S^{2n-1}]$ is of order 2^n and $2^{n-1}[T, S^{2n-1}]=[T_1, S^1][P_1(C)]^{n-1}$.

(4.2) Suppose that M^{2n} is a closed almost complex manifold and that $T: M^{2n} \rightarrow M^{2n}$ is a differentiable involution commuting with the almost complex structure. If T has only isolated fixed points, then the number of fixed points is of the form $k \cdot 2^n$. Moreover $[M^{2n}] = k[P_1(C)]^n$ in $\mathfrak{U}_*/2\mathfrak{U}_*$.

As an example it is easy to construct a complex analytic involution on $[P_1(C)]^n$ having exactly 2^n fixed points.

- 5. Weakly complex actions of $(Z_p)^k$ and Z_{p^k} . Consider a weakly complex action of $(Z_p)^k$, p a prime; that is, consider maps T_i : $M \rightarrow M$, $i=1, \dots, k$, of period p which commute and all of which have invariant the same weakly complex structure on M. Our previous methods $[1, \S43]$ apply to show that if $(Z_p)^k$ acts in a weakly complex fashion on the closed n-manifold M without stationary points, then the Chern numbers of M are all divisible by p. We strengthen this to the following.
- (5.1) The ideal of \mathfrak{A}_* consisting of all elements admitting a representative M upon which there is a weakly complex action of $(Z_p)^k$ without stationary points coincides with the ideal of \mathfrak{A}_* consisting of all elements whose Chern numbers are all divisible by p.

In the above, there is exhibited a sequence p, M^{2p-2} , \cdots , M^{2p^k-2} , \cdots with $(Z_p)^{k+1}$ acting as required on M^{2p^k-2} . Here M^{2p^k-2} is the submanifold of $P_p{}^k(C)$ consisting of all $[z_0, \cdots, z_p{}^k]$ with $\sum z_i^p = 0$. Each generator of $(Z_p)^k$ sends $[z_0, \cdots, z_i, \cdots]$ into $[\rho_0 z_0, \cdots, \rho_i z_i, \cdots]$ for appropriate choice of pth roots ρ_i of unity. The bordism classes p, $[M^{2p-2}]$, $[M^{2p^2-2}]$, \cdots generate the ideal of elements of \mathfrak{A}_* all of whose Chern numbers are divisible by p.

In a similar fashion, we can consider the ideal of the oriented bordism ring Ω_* represented by manifolds M upon which some $(Z_p)^k$ acts, preserving the orientation and without stationary points, for p an odd prime. This ideal consists of all elements having all Pontryagin numbers divisible by p. The analogous problem in which k is fixed continues to be unsolved.

We consider now actions of Z_{p^k} , solving a problem that was only treated with partial success in our previous work [1, §45].

(5.2) Suppose that $T: M \rightarrow M$ is a weakly complex map of prime power period p^k on the closed manifold M. If T has no fixed points, then $[M] \in p\mathfrak{U}_*$. Similarly if T is a differentiable orientation preserving map of prime power period p^k , p an odd prime, acting on the closed oriented manifold without fixed points, then $[M] \in p\mathfrak{Q}_*$.

Besides using the results of §4, the proof uses a desingularization process based on expressing every lens space as a boundary in a specific way. Namely consider a closed manifold M upon which the compact Lie group G acts in a weakly complex fashion. Let $S^1 \subset G$ be in the center of G and suppose S^1 has no stationary points in M. Then

there exists a weakly complex action of G on a compact manifold W so that $\partial W = M$ and so that the action of G on W restricts to the action of G on M.

For p=2, the conclusion of (5.2) in the oriented case would be definitely false [1, §45]. However for p odd the normal bundle η to the fixed point set F can be reduced to the unitary group, and the methods of the complex case apply.

- 6. Equivariant maps. In this section we indicate the application of bordism to nonexistence theorems for equivariant maps. For simplicity of statement, we confine ourselves to p=2; the results can be extended to any p.
- (6.1) THEOREM. Consider an element $\gamma \in \widetilde{\mathfrak{U}}_{2n-1}(B_{\mathbb{Z}_2})$. The order of γ divides 2^k if and only if there exists a representative (T, M^{2n-1}) of γ and a map $f: M^{2n-1} \to S^{2k}$ with f(Tx) = -f(x) for all $x \in N^{2n-1}$.

In a different terminology, the order of γ divides 2^k if and only if some representative (T, M^{2n-1}) is of co-index $\leq 2k$. Hence it becomes of geometric interest to compute the order. We do not know any general methods; we can however make the computation in a special case. Namely, let Z_4 act in a free unitary fashion on S^{2n-1} . Now $Z_2 \subset Z_4$, and we obtain a free weakly complex action of Z_2 on $S^{2n-1}/Z_2 = P_{2n-1}(R)$. We show that the order of $[Z_2, P_{4n+1}(R)]$ is 2^{n+1} ; hence by (6.1) there exists no equivariant map of $P_{4n+1}(R)$ into S^{2n} . This represents some progress on a question we have investigated previously [3]. Anderson at Berkeley has proved similar nonexistence theorems by K-theory. Our proof uses a natural homomorphism $\mathfrak{U}_m(B_S^1) \to \mathfrak{U}_{m+1}(B_{Z_2})$, and a study of $f_*: \mathfrak{U}_*(B_S^1) \to \mathfrak{U}_*(B_S^1)$ where f acts on a generator $a \in H^2(B_S^1)$ by $f^*(a) = 2a$.

BIBLIOGRAPHY

- 1. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer, Berlin, 1964.
- 2. ——, Cobordism theories, Seattle Conference on Differential and Algebraic Topology (mimeographed), Amer. Math. Soc., Providence, R. I., 1963.
- 3. ——, Fixed point free involutions and equivariant map. II, Trans. Amer. Math. Soc. 105 (1962), 222-228.
- **4.** John Milnor, On the cobordism ring Ω^* and a complex analogue, Amer. J. Math. **82** (1960), 505-521.
- 5. G. W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.
- 6. K.-G. Zelle, Symmetrien von Mannigfaltigkeiten und Charakteristiche Zahlen, thesis, Bonn, 1963.

University of Virginia and Institute for Advanced Study