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1. Introduction. There are two main theorems in this note. The 
first states the close connection between the localization and direc-
tionalization of uniform convexity in a normed space X and various 
differentiability conditions satisfied by the norm in X*. This answers 
a question implicit in [l; 5] and makes possible the extension of the 
dual theory of differentiability of the norm as initiated in [6; 7]. The 
second main theorem examines the spherical image map defined on 
certain infinite dimensional manifolds imbedded in X and gives char­
acterizations of the smoothness of the manifold in terms pf the con­
tinuity properties of the spherical image map in various topologies 
in the spaces X and X*. These results can be used to solve a problem 
proposed in [4]. 

Notation. X will be an arbitrary normed linear space with the reals 
as scalar field. U= {x: \\x\\ g l , xE.X}, 5 = {x: \\x\\ = 1, x&X) and 
U' and S' denote the analogous sets in X*. Q is the canonical map 
imbedding X into X**. When it is to be emphasized that the con­
jugate norm in X* is being considered, this norm will be denoted by 
|| '||*. 0 is the neutral element of a linear space. 

2. Modifications of uniform convexity and differentiability of the 
norm. Define the modulus of uniform convexity by 

0(e) = inf 2 - | | * + y||. 

In the next few definitions let ƒ and g be fixed elements in S'. Then 
the modulus of weak uniform convexity at ƒ is defined by 

ô(e,f)= inf 2-\f(x + y)\; 

the modulus of uniform convexity in the direction g is defined by 

Ô(e,g)= inf 2 - | | * + y||; 
\o(x—v)\te;x,veS 

1 This note is a summary of a part of a dissertation and submitted in partial fulfill­
ment of the requirements for the Ph.D. degree at the University of Illinois (Urbana). 
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and the modulus of weak uniform convexity at f in the direction g is 
defined by 

«(«,ƒ,*)= inf 2 - | ƒ(* + ?) | . 
\o(x—y)\^e;x,yeS 

X will be said to be uniformly convex (see [2]), weakly uniformly con-
vex atf, uniformly convex in the direction g, or weakly uniformly convex 
at ƒ in the direction g provided the corresponding modulus is positive 
when 0 < e < 2 . 

Let x, yÇzS and consider the limit 

\\x + avu — \\x\\ 
(*) G+(*, y) « lim ~ —- • 

a-K)+ a 

Let G~(x> y)~ — G+(x, —y). Then || *|| is said to be differentiable at 
x with respect to y provided G+(x, y)—G~~(x, y); ||«|| is said to be 
Frêchet differentiable at x provided G+(x, y) =G~(x, y) for all y in S 
and the limit (*) is approached uniformly as y varies over 5 ; || *|| is 
said to be uniformly Gateaux differentiable in the direction y provided 
G+(x, y) =G~(xf y) for all x in S and the limit (*) is approached uni­
formly as x varies over S; \\ -|| is said to be uniformly Frêchet differen­
tiable provided G+(#, y) = G"~(x, y) for all x and y in S and the limit 
(*) is approached uniformly as x and y vary over S. 

In the next theorem X is an arbitrary normed linear space over 
the reals and ||#|| = |HI = ||/||* = | |g| |*= 1. Dual results are indicated 
by primes. Smulian [7] gives (iv) and (iv') and the sequentialized 
forms of (ii) and (n/). 

THEOREM 1. (i) || -||* is differentiable at f with respect to g iff X is 
weakly uniformly convex at ƒ in the direction g. (ii) || -||* is Frêchet 
differentiable at f iff X is weakly uniformly convex at ƒ. (iii) || • || * is uni­
formly Gateaux differentiable in the direction g iff X is uniformly convex 
in the direction g. (iv) IN|* is uniformly Frêchet differentiable iff X is 
uniformly convex. (V) || -\\ is differentiable at x with respect to y iff X* 
is weakly uniformly convex at Qx in the direction Qy. (ii') || •|| is Frêchet 
differentiable at x iff X* is weakly uniformly convex at Qx. (iii') || -|| is 
uniformly Gateaux differentiable in the direction y iff X* is uniformly 
convex in the direction Qy. (iv') || ' | | is uniformly Frêchet differentiable 
iff X* is uniformly convex. 

3. The spherical image map. Let K be a closed bounded convex 
set with an interior point in the norm topology of X. For each point 
x on the boundary of K let vx> the spherical image of x, be the set of 
linear functional of norm one with the property that the inverse 
image of a positive number is a hyperplane of support of K at x. 
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Denote by || *||i a norm equivalent to || -|| and let Ui={x: | | x | | i ^ l , 
x £ l } , 5 i = {x: | | x | | i= l , xÇzX}. In the next theorem the infinite 
dimensional manifolds 5 and 5i are considered and in the latter case 
the spherical image map v is defined as above by setting TJ\ = K. The 
"only if" part of (i) is given in [6], 

THEOREM 2. (i) || -|| is differentiable at any x on S with respect to 
any y on S iff the map v defined on S is lower semicontinuous from the 
norm topology on S into the weak* topology on S'. (ii) || -|| is uniformly 
Gateaux differentiable in any direction y on S iff the map v defined on S 
is single valued and uniformly continuous from the norm topology on S 
into the weak* topology on S'. (iii) Let v be defined on Su Then || -||i is 
[uniformly] Fréchet differentiable iff v is single valued and [uniformly] 
continuous from the norm topology on Si into the norm topology on S'. 

4. Application. Define the extended spherical image map T from X 
into X* by setting Td = 9 and r x = ||x||ï'[iaîjr

1a; for x^d. I t is well 
known that if X is a real Hilbert space (so that X is uniformly convex 
and uniformly Fréchet differentiable) then T is a linear isometry 
between X and X*. Klee [4, p. 35] has posed the following problem: 
Characterize intrinsically those spaces X for which T is a homeomor-
phism of X onto X* in the norm topologies. 

The main theorems of this note can be combined to give the follow­
ing answer to this problem. 

THEOREM 3. T is a homeomorphism iff X is a weakly uniformly con­
vex Banach space with a Fréchet differentiable norm. 

The proofs of these and other theorems with other applications 
are to be found in [3]. 
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