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1. Introduction. 1.1. Let b~(F> p, B) be an orientable w-plane 
bundle, i.e., p(b): F(b)~-*B(b) is a bundle map with Rn as the fiber, 
SO(n) as the group and a connected C.W. complex B(b) as base space. 
Let Wi(b) SHl(B(b) ; J) be the Stief el-Whitney classes of b. The group 
J = Z if i is odd or i~n and J equals Z% otherwise; wn(b) is also the 
Euler class of b. 

1.2. Associated with b are Fn ,m bundles, bm (Vn,m is the Stiefel 
manifold of orthogonal m frames in i?n). Letting k — n — rn we will 
write 

6- = ( f i U b ) , 5(b), * (b)). 

We are interested in finding invariants which would tell whether or 
not there exists a cross section in bm. In a sense this problem is already 
solved using the Postnikov systems. What we will do is to identify 
certain classes in universal examples whose image in H*(B(b)) must 
be zero if a cross section is to exist over the k + 6 skeleton of B(b). 
The computations are based on a modification and extension of the 
results of Hermann [2], 

The first obstruction is just Wk+i(b). I t turns out that the higher 
classes are not unique elements but rather cosets of certain groups. 
We can specify this group for each obstruction studied in terms of 
computable operations in H*(B). In addition, these higher classes 
satisfy certain relations. By using both the indeterminacy and these 
relations, the obstructions can be computed in many interesting cases. 
Our detailed computation for the first six obstructions are valid only 
in the stable range for the homotopy groups of Vk+m,m. Full details 
will appear elsewhere. 

Some of the applications of these results to the question of immers­
ing and embedding manifolds into Euclidean space are listed in §5. 

2. Obstruction theory. 2.1. Let Q = (£ , p, Gk+m) be the universal 
k+m plane bundle over Gk+m, the Grassman manifold of oriented 
k+m planes in Rw. Let %m= (£*,»», p, Gk+m) be the associated Vk+m,m 
bundle. Let b = (i7, p, B) be any k+m plane bundle. To each bundle 

1 This work was supported by a grant from the U. S. Army Research Office 
(Durham). 
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b there is a classifying map ƒ&: B—>Gk+m and the bundle hm has a cross 
section iff ƒ& can be lifted to a map ƒ: B—*Ejc,m (that is, pf~fb). So 
the obstructions to finding a cross section are just the obstructions 
to lifting the map ƒ&. We will use a modification of the Postnikov 
tower for gm as constructed by Moore [8] and used by Hermann [2] 
to investigate these obstructions. 

2.2. By a Postnikov tower for 8W we mean a tower of fiber spaces 
and maps 

K(Ahn(i)) 

-» Ek,m * .Ek,m • ' ' ' >Ek,m > Gk+n 

In the Postnikov tower of Moore, Trn(i)(Vk+m,m) = Aif n(i) < n ( i + l ) , 
and each nonzero homotopy group of the fiber appears. Our modifica­
tion consists in replacing the single fiber space 

i Pi i—i 
K(Aiy n(i)) -> Ek,m —> Ek,m 

by a tower of fiber spaces if the group Ai is different from a free 
abelian group or a direct sum Z p ® • • • ©Z p for some prime p. For 
example, from [lO] we have 7ru(Fi2,3) = Z © Z 4 and this is the third 
nonzero group. The modified tower will have, in place of the single 
fibering of Moore's system, the following 

K(Zt, 11) K(Z2, 11) K(Z, 11) 

/ / / 
6 4 3 

. . . —» £ 9 3 » £9,3 > E%f% > • • • . 

Each fiber is constructed so that the fiber of the composite p : EliZ —>E\tZ 

will be homeomorphic to K{Z@Z^ 11). This modification is impor­
tant because of the difficulties involved in identifying the fe-invari-
ants if Ai is not free abelian or a vector space over a field [3]. 
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3. The construction of the tower 2.2.1. In this section we will 
describe a procedure for constructing the modified Postnikov system. 

3.1. The group Ax is Z if m*~ 1 or &=0 mod 2 and is Z2 otherwise. 
The k-'mvariant is just wk+i. 

The map ht: H*(El
tfm)—»iJ*(E^,m) is an epimorphism in dimen­

sions up to 2k. This implies that none of the fiber spaces in the tower 
(up to n(i) =2k) is trivial. 

3.2. Suppose we have constructed E%{^ such that, letting î """1 be 
the fiber of p: El

k~^—>Gk+m, we can find a j so that ^ ( ^ " ^ ^ ^ ( F / b + m . m ) 
if n<j and Trn(F

i~'1) = 0 if n^j. Then for this j and i we have 

LEMMA 3.2.1. If n^j, then h*-x\ Hn(E%£)~-*Hn{Ehtn) is an isomor­
phism. 

COROLLARY 3.2.2. The group 

B* = ker (hti: E*+\l£tl\ Z) -+ HJ+1(Ek>m; Z)) 

is a free abelian group. 

3.2.3. Let B^kerihUiH^iE^; Z9)-*H*"(Ek,m; Z,)) . Then 
3.2.2 implies that in both Bl and B\ we can talk about a finite linearly 
independent set of generators (consider B\ as a vector space over Z?). 
Then the space E{fm will be defined as the fiber space over El~^ 
having an independent set of generators of Bl as the fe-invariants. 
The fiber will be K(JB\ j). The space Ejijf is a fiber space over E1^"1 

having an independent set of generators of Bl
2

+$ as fe-invariants and 
K(B%

2
+fi, j) as fiber, /3=1, 2, • • • . When B ^ = 0 we continue with 

£ ^ + / \ then with BÊ+ '+*+*, etc. 
3.3.1. Since each class which was used as a fe-invariant in the above 

construction has to be killed in any Postnikov tower for the fiber 
space gm and since no homotopy group is attached with a zero k-
invariant in such a tower, the procedure of 3.1 and 3.2 will yield a 
modified Postnikov tower for gm up to dimension 2k. 

3.3.2. Knowledge of the homotopy groups as computed by Paechter 
[lO] is not needed for this procedure but knowing them helps to 
make the computation by indicating how many elements there should 
be in Bl

p a t each stage. 
3.3.3. In order to identify the groups B\ the following construction 

is used. We first observe that Ek,m, the total space of gM, is of the 
same homotopy type as Gk and, further, that for each i there exists a 
homotopy equivalence X so that hih = \i in the following diagram: 
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* Ek,m* 

In this diagram G is the fiber space over Gu induced by X; from 
pi+i:E$£—>£fc)Wl. The space G is homeomorphic to GkXK(Ai+i,n(i+l)) 
and p is a cross section defined so that hi+\k = Xp. Then the kernel of 
&?+1 is just the kernel of p*X* and this group is comparatively simple 
to evaluate. 

4. Obstructions in sphere bundles. 4.1. As an illustration of our 
procedure we will outline the result for sphere bundles. This pro­
cedure is different from the one used in [5] in which we followed 
Hermann's program more closely. We will use the symbol kl to stand 

^%m- Fo r w = l and k^5 (the stable for the fe-invariant of pi'. E£|W 

range) the tower 2.2.1 begins 

K(Zhk+3) K(Z2,k+3) K(Z2,k+3) K(Z2,k+3) K(Z2,k+2) K(Z2fk + l) K(Z,k) 

E* -> R* -> £5 

where b = (F, p, B) is a fe-sphere bundle. The first obstruction, kl, is 
just Wk+i(b). If wk+i(b) = ftfwk+i = 0 t hen / i can be defined. In general, 
fi is defined iff there exists an ƒ*•_! such that/<*Li&i=:0. 

THEOREM 4.1.1 (LIAO [4]). As f\ ranges over all possible liftings, 
f?k2 ranges over a coset of (Sq2+w2(b)')Hk(B', Z)C.Hk+2(B\ Z2). We 
also have (Sq2+w2(b)-)k2 = 0. 

THEOREM 4.1.2. For a fixed fi, as f2 ranges over all possible liftings, 
f?kz ranges over a coset of (Sq2+w2(b)-)Hk+1(B) Z2)=G1CHk^(B) Z2). 
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THEOREM 4.1.3. There is a class k*'GHk+*(E\ Z2) such that ptpW 
= k\ We have SqW + (Sq2Sqx+Wz(b) -)k2 = 0 in H*(El). 

THEOREM 4.1.4. The class kb satisfies Sqlk* = 0. 

THEOREM 4.1.5. As ƒ3, f A and ƒ& range over all possible liftings such 
that fz*(k*) =f*(kb)—0, the class f *k* lies in a coset of a group K con­
taining (Sq2+w2(b)-)Hk+2(B; Z2)®SqxHk+*(B; Z2)=i£i . 

THEOREM 4.1.6. There is a class fe^EiP+^E1, Zz) such that its 
image in Hk+é(E6; Zz) is k7. As fi ranges over all possible liftings 
f?(kv) lies in a coset of ((?l-hpl)H

k(B; Z)CHk+i(B; Zz). (&l is the 
first reduced Steenrod cube and pi is the first Pontryagin class (mod 3) 
ofb.) 

4.2. If we vary / i and f2 such that f*k2 = 0, then f*kz lies in a coset 
of a group G containing G\. This group is identified in [5 ] in terms of 
a "secondary bundle operation." If we vary ƒ,-, i= 1, • • • , 5 such that 
/ * & m = 0, i = l , • • • , 4 then /6*fe6 lies in a coset of a group K con­
taining K\. This group is also identified in [5] in terms of a "tertiary 
bundle operation.7' For all the applications we have made, it has been 
sufficient to know the relations and indeterminacy as described in 
4.1.1 to 4.1.6. 

4.3. As an illustration on how one can apply these results we will 
prove 

THEOREM 4.3.1. Suppose fe==7 mod 8. If b is any orientable k + l 
plane bundle over Pk+e (real projective space), such that W2(b)?£0 and 
Wk+i(b) = 0 , then b has a nonzero cross section. 

PROOF. Since Hk(Pk+z\ Z ) = 0, the indeterminacy of /*fe2 is zero» 
Since (Sq2+w2<)Hk+2(Pk+s] Z2)-+Hk+*(Pk+s', Z2) is an isomorphism, 
the second part of 4.1.1 implies f\(k2) = 0 . Since Sql is an isomorphism 
in dimension Jfe+4, 4.1.3 implies /i*(fe4') = 0 . For fixed / i , f*kz is in a 
coset of (Sq2+w2)H

k+l(Pk+&) Z2)=Hk+*(Pk+b; Z2) and hence there is a 
lifting f2 such that /2*(F) = 0. Since /i*(&4') = 0, we have /3*(£4) = 0 for 
any choice of/3. By 4.1.4 we see that for any choice of/4, f*(kb) = 0 . 
Since (Sq2+w2-)H

k+2(Pk+,; Z2)=Hk+*(Pk+6; Z2), by 4.1.5 there is a 
choice of ƒ3, ƒ4 and ƒ5 such that f*k6 = 0. Finally, since H*+4(PA>+«; Zz) 
= 0, f*k7 = 0. Since irk+4:(S

k) = Tk+z(Sk) = 0 the obstructions in the next 
two dimensions are necessarily zero. 

5. Applications. 

LEMMA 5.1. Let b be any orientable k + l plane bundle over B and 
bm~h®ml (ml is the trivial m plane bundle over B). If k^0 mod 4, 
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b1 has a cross section over2 B(k+z) iff b^+ 1 has a cross section over B^+z) 
for some m. If k=2 mod 4 b2 has a cross section over B&) iff K>+2 has a 
cross section over B&) for some m. 

There are other results of this type but this Lemma, using Proposi­
tion 2 of [ l ] , yields 

THEOREM 5.2. The following embeddings of real projective spaces are 
possible: (a) If k = 3 mod 4, k>3, then PkCR2k~2. (b) If k = 4:q+i, 
* = 0, 1, or 2, and a7±V or 0, then PkCRu~z-

This result answers in the negative the conjecture in [l ], attributed 
to Atiyah, on the minimum dimension Euclidean space into which a 
projective space embeds. 

Let b= (£, B, p) be an orientable k+m plane bundle. Let U(b) be 
the Thorn class of b, i.e., U(b)EHk+m(Ey E0 ; Z) (E0 is the collection 
of nonzero vectors). With these definitions we have 

THEOREM 5.3. For each secondary obstruction coset v(k, b) to finding a 
cross section of bm, ra^3, there is a secondary cohomology operation 4> 
such that <j>(U) = U- (v(k, b)+a) where a is polynomial in the Wi(b). 

We have been able to show that a is either w2-wk or zero and, if 
k = 23' — 2, then a — w2 • wk. Under greater restrictions, a similar formula 
holds for some of the other higher obstructions. 

Theorem 5.3 can be applied to the question of immersing differen­
tial manifolds. Hirsch [3] has proved that , if n is the normal bundle 
to an embedding of an orientable compact differentiable manifold 
Mn without boundary into Euclidean space Rm and if nr has a cross 
section, then Mn can be immersed in Rm~\ If we apply 5.3 to the 
normal bundle of an embedding of Mn into R2n+1, using some of the 
ideas of Massey in [6], we obtain the first of the following theorems. 
The second follows by a refinement of the argument. In the next 
three theorems n is this normal bundle. 

THEOREM 5.4. Suppose n>£. If n=0 mod 2, then Mn is immersible 
in R2n~2 iff w2(n) •ww_2(n) = 0 . If n^O mod 4 and ww_2(n)=0, then 
Mn is immer sible in R2n~z. 

This theorem contradicts a result of Novikov (Theorem 2 of [9]). 
Indeed if Mn is complex projective space CPn/2 where n/2—21' then 
w2(n) • wn_2(n) F^O and so Mn^R2n~2 {Mn does not immerse in R2n~2). 
But Novikov's result implies MnÇ^R2n~2. I understand that J. Levine 
has an alternate proof of this result. In addition Massey [7] has 
shown that if wn_2(n) 7*0 then n = 2k(2h + l) for non-negative integers 

2 The notation B(n) denotes the w-skeleton of B. 
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h and k, with cases k=l, h>0 and h=l, k^O ruled out. Thus 
w2(n) -wn-2(ti) = 0 except possibly for these values of n. 

THEOREM 5.5. Let A = SqlHn~2(Mn; Z2), n>5 and wn_2(n) = 0. If 
n^= 1 mod 4, then the second obstruction to finding a cross section in n4 is 
a+A. If w = 3 mod 4, thent the second obstruction differs from a by a 
class in A. If n=0 mod 4, the second obstruction is zero. 

If n^l mod 4, the third obstruction to finding a cross section to 
n4 is always zero by [lO]. Therefore we have 

THEOREM 5.6. If n~ 1+2 ' , n>5, wn_2(n) = 0, then Mn is immer sible in 
R2n-z ^ Wa(n) .Wn^(n)£Sq1H"-*(M»; Z2). 

Finally, applying Hirsch's theorem to projective spaces, we have 

THEOREM 5.7. The following results on the immersion of projective 
spaces hold: 

(a) !ƒ n = l mod 4, n ^ 2 ' + l, then PnQR2n-\ 
(b) If n=2i+l, n>3, then PnQR2n~\ 
(c) ƒƒ w=3 mod 8, w â l 9 , tóen PnQR2n~\ 
(d) PisâËi?20. 

By quite different methods, B. J. Sanderson and J. Levine have ob­
tained (a), (b), and (c). Only is (b) known to be the best possible re­
sult. 
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