
A GEOMETRIC METHOD IN DIFFERENTIAL TOPOLOGY 

BY ANDREW H. WALLACE 

Introduction. My aim here is to explain in an informal way a tech­
nique which has proved itself useful in dealing with certain problems 
in differential topology. The title refers to the fact that the method 
relies principally on the geometric construction of spherical modifica­
tions and certain associated constructions. The general plan of this 
exposition is, firstly, to define the notion of spherical modification, 
secondly, to describe some operations which can be performed on 
these modifications, and thirdly, to give some applications. The arti­
cle concludes with some remarks on related work. A more formal and 
detailed presentation of the material treated here appears in [3; 4] . 

1. Definition. Let Mi be a differentiable manifold of dimension n 
and let Sr be an r-sphere embedded in Mi. If Sr has a neighborhood 
in Mi of the form SrXEn~r, where £n~ r is an (n —r)-cell, then Sr is 
said to be directly embedded in Mi. If, in this case, SrXEn~r is re­
moved from Mi, what is left is a manifold having a boundary of the 
form SrXSn~~r~l. The latter set is, however, also the boundary of 
£ r + 1 X 5 n ~ r - 1 . Thus, forming the union 

{Mi - (Sr X E ^ ' ) } U (£ r + 1 X S-*-1) 

with the appropriate identification of boundaries, a new manifold Mi 
is obtained, which can also be made differentiable by a suitable 
smoothing operation. The manifold M% is said to be obtained from Mi 
by a spherical modification. 

A familiar example of this process is obtained by taking Mi to be 
the hyperboloid of two sheets x2 —y2 — z2 = 1 and Mi to be the hyper-
boloid of one sheet x2 — y2 —z2 = — 1 in Euclidean 3-space. Sr is to be 
taken as the 0-sphere consisting of the union of the two points 
(— 1, 0, 0) and (1, 0, 0). In this case the set removed is a pair of discs 
and the set inserted is a circular cylinder. 

More generally, Mi could be taken as the quadric hypersurface 

r+l 2 n+1 2 

/. f X{ *~ / j Xi ==: 1 

in (w + l)-space, and Mi as the hypersurface whose equation is ob­
tained from the above by changing the right hand side to — 1. In this 
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example it is easily seen that one can make a continuous transition 
from Mi to M% namely by passing through the family of quadrics 

;+i 2 •£} 2 

(1) 2 J Xi "~~ ZJ #* = *> 
i » l t—r+2 

allowing £ to vary from 1 to — 1 . All the quadrics in this family are 
nonsingular except when £ = 0, in which case the hypersurface has a 
nondegenerate quadratic singularity. Also, still referring to this exam­
ple, the family of orthogonal trajectories F to the family (1) can be 
constructed. The family of curves F will have one singular point, 
namely the origin. All the members of F meeting the r-sphere Sr in 
Afiobtained from (1) by setting £ = 1 and X; = 0 for i^r + 2 or meeting 
the (» —r—1)-sphere Sn~r~1 in M% obtained by setting £ = - - 1 and 
Xi = 0 for i^r + 1 end at the origin. And all the members of F meet­
ing neighborhoods of these spheres in Mi and Mi fill out an (w + 1)-
cell, while the union of the remaining members of F makes up the 
product ( M i - (SrXEn~r)) XI. 

The description just given applies not only to this example, but to 
any transformation of a manifold Mi to M2 by a spherical modifica­
tion. This follows from the fact that the whole operation of a spherical 
modification, as defined earlier in this section, depends only on a 
neighborhood of the corresponding r-sphere Sr. Thus also in the gen­
eral case Mi and M2 form the boundary of a manifold M, which will 
be called the trace of the modification, and there is a family F of 
curves in M, one curve passing through each point with the exception 
of one singular point. These curves can be parametrized by a param­
eter / so that Mi and M% are the sections t = 0 and / = 1, respectively, 
and so that all the sections / = constant are nonsingular with one ex­
ception. This exceptional section will have one nondegenerate quad­
ratic singularity P , namely the singularity of the family F. In the 
notation used earlier in this section, it will be noted that the members 
of the family F beginning on Sr all end at P , and those ending a t a 
certain (# —r —1) -sphere 5w~r~1 in M2 all begin at P . For this reason 
it is convenient to think of the modification as shrinking Sr and intro­
ducing Sn~r~l. 

More generally now, suppose that M2 is reached from Mi by per­
forming some finite number of spherical modifications. Their traces 
can be put together to form a manifold M (to be called the trace of 
the set of modifications) with boundary M1UM2. Thus Mi and M2 
are cobounding manifolds. Also the families of curves corresponding 
as described above to the modifications can be put together to form 
one family in ikf, one curve passing through each point with a finite 
number of exceptions, one for each modification. 
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The converse of the result just stated is also true. Namely, if Mi 
and M2 are cobounding manifolds then there is a finite sequence of 
spherical modifications leading from Mi to M2. This can be proved 
by making a suitable embedding of the manifold M whose boundary 
is M1UM2 in iV-space so that Mi and Mi are the sections XN = 0 and 
XN= 1, respectively, while the sections of M by XN = constant are all 
nonsingular with a finite number of exceptions having nondegenerate 
quadratic singularities. Each singular section then corresponds to one 
modification. 

2. Rearrangement of modifications. Some operations on modifica­
tions are now to be described. The first, which will be considered in 
this section, is the operation of switching the order of performing two 
modifications, under suitable conditions. Referring to Figure 1 for 

F I G U R E 1. 

guidance, let Mi be transformed to ikf2 by two modifications <£, yp, 
the combined trace of these modifications being M. <j> shrinks the 
sphere Sr to the singular point P of the curve family F associated 
with the modifications, and this modification introduces Sn~r~1. Let 
\j/t operating on <j>(Mi), shrink the sphere Ss to the singular point Q 
of the family F and introduce Sn~*-1. Assume that 5*n5 n - r ~ 1 = 0 . 
Then S* can be pulled back along the curves F into Mi. Thus the two 
modifications <j> and \p can both be thought of as operating on Mi. In 
the present arrangement, the modification cj> is performed first, and 
so, as the parameter on the family ^increases from 0 to 1, the singular 
point P is reached before Q. However the parameter can be changed 
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so that it increases faster on the curves of F starting a t points near 
Sr. The result will be that , as one proceeds along the curves F, using 
the new parameter, the singular point Q is reached before P. Hence 
the modification x// is performed before <£. That is to say, the order of 
carrying out the pair of modifications 4> and \p has been reversed. 

The condition for the above reversal in the order of $ and \[/ is 
that Sar\Sn"r'~1^= 0 . This can always be guaranteed if sSr. For in 
this case S8 can be made disjoint from S71"1"*1 by a small isotopic dis­
placement, and it is clear that the result of a modification is un­
affected by such a displacement of the sphere to be shrunk. 

The result just obtained can be applied systematically to any 
finite sequence of modifications leading from M% to M%. When this is 
done, it can be arranged that modifications shrinking s-spheres are 
performed before those shrinking r-spheres whenever s<r. And of 
course modifications shrinking spheres of the same dimension can be 
commuted freely among themselves. 

3. Addition of modifications. The title of this section is a conven­
ient but somewhat elliptical form of description, since the things 
which are actually to be added are elements of homology or homo-
topy groups. 

FIGURE 2. (b) shows «Sa deformed across E, then pulled back into Mi. 
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Let fa and fa be modifications shrinking r-spheres Si, respectively 
52 in Mi, assumed disjoint, and let Si, S2 carry elements ai, ai, 
respectively, of Hr(Mi). Suppose that the modification fa is done first. 
Then the curve family F associated with fa can be used to pull a 
displaced copy of Si up into fa(Mi), giving a sphere S{ in that mani­
fold. S{ will, however, bound a cell E in ^i(Jlfi). 52, being disjoint 
from Si, is carried into fa(Mi) by the curve family F, giving a sphere 
Si in fa(Mi). fa is now to be performed on fa(Mi) by shrinking the 
sphere Si. But, as already remarked, the result of a modification is 
unaffected by an isotopic deformation of the sphere to be shrunk. In 
particular, fa gives the same result if Si is first deformed across the 
cell E. But now, if the displaced Si is pulled back into M by means 
of the curve family F, a sphere is obtained which carries ot2±oùi 
instead of «2, the sign depending on the way in which the deformation 
was made. 

Hence the result of the pair of modifications fa, $2 is the same as 
that of a pair of modifications fa, fa shrinking spheres carrying ai, 
«2±«i. Also the trace of the pair fa, \p2 is the same as that of fa, fa. 

Repeated application of this result shows that the pair of modifica­
tions fa, fa, shrinking spheres carrying on, a<i in Hr(Mi), gives the 
same result (and has the same trace) as a pair of modifications shrink­
ing spheres carrying oti and a2+kai, where k is any integer. 

Again this result may be applied repeatedly to a set of modifica­
tions fa, fa, • • • , fa shrinking disjoint r-spheres carrying ai, 012, • • • , 
an in Hr(Mi). These modifications will then give the same result and 
have the same trace as a set of modifications fa, ^2, • • • , fa shrinking 
spheres carrying ]8i, /32, • • • , (3h in Hr(Mi), where the ]8»- are obtained 
from the a, by a unimodular linear transformation, for any such 
transformation can be expressed as a product of transformations of 
the type (on, ai)—>(ai, a2+kai). 

The disjointness of the spheres involved in this result will usually 
arise automatically in applications, the most important cases being 
where 2 r<d im Mi. The result is stated above in terms of homology, 
but a similar statement can be made in terms of homotopy groups, 
with suitable adjustments relative to the base point. 

4. Complementary modifications and cancellation. Suppose that a 
modification <j> on Mi shrinks a sphere Sr which is the boundary of an 
(r+l)-cell Er+l. The effect of the modification is to close up Er+l to 
form an ( r+l ) -sphere Sr+1 in faMi). Now suppose that this sphere 
5 r + 1 is directly embedded and let yp be a modification shrinking it. 
yp will be said to be complementary to <£. 

When two modifications are related in this way, it can be shown 
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tha t the final result yp<t>(Mi) is Mi itself and that the trace of the pair 
<{>, xP i s MiXl. 

F I G U R E 3. (a) S ' = 5° is marked on £2 ; here/==0. 
(b) t increases. 
(c) t increases further, and points forming S° are about to coalesce. 
(d) Modification <j> is completed. Surface is now a torus, and stages (a), 

(b), (c) are supposed to be inside the solid which it bounds. 

To illustrate this (Figure 3) take Mi=S2 and consider a modifica­
tion 4> shrinking a 0-sphere to give a torus for 4>(Mi). The trace of <£ 
is a solid bounded by a sphere and a torus, that is to say, a solid 
torus with a spherical hole in it. If the family F of curves correspond-
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ing to <t> is parametrized by t, the set t = 0 is the inner spherical bound­
ary. As t increases from zero the set t — constant will be a sphere in­
creasing in size, and growing horns around the points forming the 0-
sphere to be shrunk by <£. As t increases these horns meet and join 
so that a torus is formed. The join of the two points forming Sr is a 
1-cell which (j> closes up to form a circle Sl on the outer surface of the 
solid torus. A second modification xf/ is to shrink 51. Reasoning as 
above, it is clear that the trace of ^ will be a solid having the torus as 
its inner boundary and a sphere as its outer boundary. Then the 
traces of 4> and \p put together will form a solid sphere with a spherical 
hole in it, that is to say S2XI. 

5. Applications. Suppose first that Mi and M2 form the boundary 
of the manifold M, and that the corresponding set of modifications 
leading from Mi to M2 consists of one, <£, shrinking an (r — l)-sphere 
5 r _ 1 and a number of modifications shrinking r-spheres. The results 
of §2 imply that 4> can be assumed to be done first. Assume also that 
7Tr(M, Mi) = 0. This implies in particular that the r-cell E\ bounded in 
M by Sr~l can be pulled back into M% giving a cell Ei with boundary 
Sr~~l {cf. Figure 4). Then the modification $ shrinks Sr~l and so closes 
up E2 to form a sphere Sr. This is homotopic in M to E1UE2 and so 
bounds a cell in M. Now there is a deformation retraction, using the 
curve family F, of M onto the union of <t>(Mi) with a number of cells, 
namely an (# —r)-cell bounded by the sphere introduced by <j> and 
(r + 1)-cells bounded by the spheres to be shrunk by the other modi­
fications. Assuming here that 2r <d im Mi, Sr will thus carry an element 
of irr(4>(Mi)) which is a linear combination of elements carried by 
r-spheres to be shrunk by modifications leading to M2. Provided that 
dim M i ^ S , the result of §3 can be applied to rearrange these modi­
fications so that one of them actually shrinks Sr. This modification 
will be complementary to <fi and so will cancel it out. 

More generally the above cancellation can be carried out system­
atically for any Mi and M2 forming the boundary of a manifold M 
and satisfying the conditions 

dim Mi = dim M2 = 2w or 2w - 1, m è 3, 

Wi(M, Mi) = 0, i g m- 1. 

I t will then follow that the corresponding modifications can be re­
arranged so that all those shrinking spheres of dimension less than 
m — 1 cancel out. 

If also Ti(M, M2) = 0 , i^tn— 1, the same reasoning can be carried 
out starting from M2 and the result will be that all modifications will 
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Mt 

FIGURE 4. (b) shows Ex pulled back into Mi; (c) shows £2 closed by <f> to form Sr 

bounding a cell in M; (d) shows M retracted on <j>{Mi) with one («—r)-cell and several 
(r+1)-cells attached. 
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cancel out except one or two types. Indeed it can be shown that if, 
in addition, Mi and Mi are simply connected and 7rm(M, Mi) 
= wm(M, Mi) = 0, then, using a refinement of the above methods, all 
the modifications cancel out. Thus under these conditions Mi = Mi 
and M=MiXl. 

In particular let M be a simply connected homology sphere of 
dimension n+1. Remove two (n+1)-cells from M. The remainder 
M' has boundary M^JMi, where the Mi are ^-spheres, and ir^M'', Mj) 
= 0 for j = l , 2 and i^n. The above result implies that all the cor­
responding modifications leading from Mi to Mi cancel out, and so 
M' is MiXl = SnXl, for n^5. Hence M = 5 n + 1 . This solves the Poin-
caré problem for dimensions greater than 5. 

6. Remarks. The operation called here a spherical modification 
appears elsewhere under various names, for example surgery, and 
%-construction (cf. [ l]) . One of the original applications [ l ] was to 
the problem of killing the homotopy groups of a manifold. The idea 
is to apply modifications shrinking spheres carrying generators of 
homotopy groups, when these spheres are directly embedded. A 
systematic scheme for such a killing process is described in [4] and 
in the forthcoming papers [5]. 

The situation described here is closely related to the theory of 
critical points of functions on a manifold. In the present notation 
if the curve family .Fis parametrized by t, then the singular points of 
this family, corresponding to modifications leading from Mi to Mi, 
are critical points of the function t on M. The rearrangement of a 
sequence of modifications so that spheres of lower dimension are 
shrunk first corresponds to Smale's construction of a "nice function" 
on M [2]. And in fact Smale's approach to the generalized Poincaré 
problem is closely related to the above treatment, the manipulation 
of modifications being replaced by the construction of functions with 
suitable properties. 

The problem which first led to my interest in this subject was that 
of giving some sort of geometrical account of the relation of cobord-
ism or cobounding between manifolds. The homotopy killing process 
mentioned above can be applied to any manifold to give a cobound­
ing manifold with a specially simple homotopy structure. If this is 
assumed done in advance to all manifolds, then, when two manifolds 
belong to the same cobordism class, they are related by modifications 
of only one or two types [4]. In forthcoming papers [5] this will be 
further strengthened. However, some essential refinement of method 
seems necessary before the ultimate ideal is attained, namely of giving 
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in geometrical terms canonical representatives for the cobordism 
classes along with a geometrical algorithm for reducing a given mani­
fold to the appropriate form. 
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