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1. Classification of certain spaces of continuously differentiable 
functions of two variables. Denote by Co the space of all complex-
valued continuous functions on the plane that are zero at infinity. 
Write || • ||oo for the supremum norm on C0. Denote by D the dense 
subspace of Co consisting of infinitely differentiable functions with 
compact support. 

Throughout we shall be concerned with differential operators of the 
form 

fim+n 

(1.1) E a-•*7n, n 
'dxmdyn 

t h e am% n are complex constants. For each set 0- of such operators, we 
define Co(&) to be the space of all ƒ in Co having A f in Co (in the sense 
of Laurent Schwartz) for all A in (X. Equivalently, Co(Ct) is the com­
pletion of D under the seminorms 

/H|/|U and /Hlil/IU, ^in<*. 
Each Co(Ct) so defined is a translation-invariant space of functions; 

those that are furthermore invariant under rotations of the plane 
will be called rotating spaces of differentiable functions. 

Certain of these spaces are familiar, namely the spaces CQ consist­
ing of those functions in Co that have all derivatives of order S N in 
Co, and the space C<5°, which is HAT CQ. A rotating space of differenti­
able functions will be called proper if it is not one of the CQ and not 
CQ. Here is the classification of such spaces. 

We use the notation 

d 1 / d d\ d 1 / d d\ 
— _. — i i — i a n ( j — — — i y i — j 
dz 2 \dx dy/ dz 2 \dx by) 

THEOREM 1.1. If a is a proper subset of 

(1.2) {dm+n/dzmdzn :m + n = N}, 
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for N a positive integer, then CQ(GL) is a proper rotating space of differ* 
entiable f unctions between CQ and CQ"1. If di and ($2 are distinct sub­
sets of (1.2) then C0((£i) and Co(ü>2) are distinct. Each proper rotating 
space of differ entiable functions is a Co(&), where Q is a proper subset 
of (1.2) for some N. 

COROLLARY 1.2. Every proper rotating space of differ entiable func­
tions is a Banach algebra under pointwise multiplication. 

For instance, the six distinct proper rotating spaces of differenti-
able functions between Cj and C% are 

Co(d2/dz2), 

C0(d
2/dz2), 

Co(d2/dzdz) = C0(d
2/dx2 + d2/dy2)y 

C0(d
2/dz2, d2/dz2) = C0(d

2/dx2 - d2/dy2, d2/dxdy), 

Co(d2/dz2, d2/dzdz), 

Co(d2/dz2, d2/dzdz). 

REMARK 1.3. Suppose instead of the supremum norm we take as basic 
norm \\f\\P~ {f\f\ p}llp, Kp<<x>. Then there are no proper rotating 
spaces 

LP(a) = {ƒ: ƒ G Lp, AfE. Lp for all A E a}. 

Indeed the only rotating spaces are the Sobolev spaces 

Lp = { ƒ : ƒ € Lp, (dm+n/dxmdyn)fE Lp,tn + n^N}, 

analogs of the CQ; and L£, which is identical with CQ. 
In a sense, rotating spaces are the ones that have geometrical sig­

nificance. From this point of view the correct definition in norm 
|| -||oo of "Sobolev space" would include not only the CQ but also the 
proper rotating spaces. 

2. Spaces of continuously differentiable functions on Riemann 
surfaces. It is possible to define algebras of functions on Riemann 
surfaces corresponding to those described in Theorem 1.1 and to 
show that these algebras determine the conformai structure. 

Let U be an open subset of the plane, C( U) the space of all complex-
valued continuous functions on U. For & a set of differential oper­
ators of the form (1.1), we denote by C(U, ®) the subspace of C(U) 
consisting of those ƒ in C(U) with Af in C(U) (in the sense of Laurent 
Schwartz) for each A in Ct. 

For a general set & of differential operators, the spaces C(U, Ot) 
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have no interesting invariance properties. However we have 

LEMMA 2.1. If G, is a subset of (1.2), the spaces C(U, (X) are invariant 
under conformai transformations. 

This result allows the extension of the definition of the C( £/, Cfc) to 
Riemann surfaces. If J? is a Riemann surface and Ct a subset of (1.2), 
C(R, a) is defined to be the space of those functions on R such that if 
U={z: \z\ < l } and <t>\ U—*R is a coordinate disk, the composite 
function ƒ o <j> is in C(U, (X). 

Each C(R, Q) is an algebra of functions on Rf with multiplicative 
linear functionals corresponding to points of R, and with a natural 
complete locally convex topology. In this topology C(R, Ct) is a 
Banach algebra if and only if R is compact. 

In three instances C(Ry (X) can be described in terms of exterior 
differential operators defined globally on R. 

C(R, d/dz) = {ƒ : ƒ and df continuous on R}, 

C(R, d/dz) = {ƒ: ƒ and df continuous on R}, 

C(R, d2Idzdz) = {ƒ: ƒ and A/ continuous on R}, 

where the operators d, d and A, taking functions into differential 
forms, are defined in terms of any coordinate system by 

df - df 1 d2f 
df=— dz, df = — dz, A/ — dzdz. 

dz dz 4 dzdz 

The following result states the extent to which the algebras C(R, ®) 
determine the conformai structure of R. 

THEOREM 2.2. Let Ri and R2 be connected Riemann surfaces and a be 
a proper subset of (1.2). Each conformai equivalence of R\ with R% in­
duces an algebra isomorphism of C(R\, 6) with C{R^ 0). IfQ is sym­
metric (i.e., dm+n/dzmdzn in & if dmJrn/dzndzm in Ct), an anticonformal 
equivalence of Ri with R2 also induces an algebra isomorphism of 
C(R\, d) with C(i?2, (X). No other algebra isomorphisms of C(Ri, (%) 
with C(R2, 6) are possible. 

A similar result identifies all algebra homomorphisms of the 
C(R, a). 

3. Sup norm estimates. The work of the preceding sections is based 
on the existence and nonexistence of certain sup norm estimates for 
constant-coefficient differential operators. In this section we state 
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these results, which may be of some independent interest. All these 
results remain valid for n variables. 

If P is a polynomial, 

P(x> y) = 23 am,nxmyn, 

we denote by PN its homogeneous part of degree N, 

P*(x, y) = 23 <*tn.nxmyn, 
m-\-n—N 

and by P its Fourier transform, the differential operator 

Y,(-i)m+nam,n 
dxmdyn 

An operator P of order N is called elliptic if PN(x, y)9é0 for (re, y) 
^ ( 0 , 0 ) . 

THEOREM 3.1. Ze£ Q, Pi, • • • , P r 6e polynomials of degree N or less. 
Then the following are equivalent : 

(1) There is a constant K so that 

\\Qf\\-£&<\\M\»+--- + \\M«) 
for all f in D. 

(2) There are finite measures jui, • • • , ixr in the plane whose Fourier-
Stieltjes transforms fa, • • • , fa satisfy 

Q = Plfa + • • • + Prfa. 

If (1) and (2) hold, it is possible to find constants c\, • • • , cT so that 

Q = CiPi + • • • + CrPr . 

THEOREM 3.2. Let P be elliptic and of order N^2. Then f or each Q 
of order strictly less than N there is a constant K so that 

\\Qf\\^K(\\Pf\\a + \\f\U) 
for all ƒ in D. 

COROLLARY 3.3. dm+n/dzmdzn is elliptic. Hence, if p+q<m+n, there 
is a constant K so that 

\\(d»+«/dxPdy«)f\\« S £(||(d^/d^S»)/IU + ll/IU) 
for all ƒ in D. 

REMARK 3.4. The situation for estimates in || -||p, Kp < <*>, is quite 
different, which is the reason for the phenomenon mentioned in Re-
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mark 1.3. To be precise, if P is elliptic of order iV, Q arbitrary of order 
^ iV, it is known that there is an estimate of the form 

\\Qf\lèK(\\Pf\\p + \\f\\p) / S A 

and the existence of these estimates is characteristic of ellipticity. I t 
is natural to ask whether the existence of sup norm estimates like 
those in Theorem 3.2 (where Q has strictly lower order) also char­
acterizes ellipticity. In the plane the answer is no, but in higher 
dimensions yes. 
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