MARKOV PROCESSES WITH IDENTICAL HITTING DISTRIBUTIONS

BY R. M. BLUMENTHAL, R. K. GETOOR AND H. P. MCKEAN, JR. Communicated by J. L. Doob, February 5, 1962

- 1. Introduction. Throughout X and X^* are to be time homogeneous Markov processes taking values in a locally compact, noncompact, separable metric space E, and both satisfying Hunt's condition (A) [2, pp. 48–50]. The purpose of this note is to give rather general conditions under which there exists a continuous random time change $\tau(t)$, in the sense of [4, p. 104], such that $X(\tau(t))$ and $X^*(t)$ are equivalent, that is that they have the same transition function. Obviously a necessary condition, at least if $\tau(t) \to \infty$ as $t \to \infty$, is that the two processes have the same hitting distributions in the sense of hypothesis (h₁) below. Our theorem is that under a mild additional assumption this condition is also sufficient. A full proof will be published elsewhere.
- 2. **Hypotheses.** Let P(t, x, A) be the transition function for the process X, P_x and E_x the probabilities and expectations for X starting at x, T_A the infimum of the strictly positive t such that X(t) is in the subset A of E and $H_A(x, B) = P_x(X(T_A) \subset B, T_A < \infty)$, A and B being Borel sets. Analogous quantities for X^* are denoted by P^* , E^* , T^* and H^* with appropriate arguments. Our hypotheses are these: (h_1) for each x in E and compact K, $H_K(x, \cdot) = H_K^*(x, \cdot)$, and (h_2) there is an increasing sequence $\{G_n\}$ of compact sets whose union is E and such that, for each x and n, $P_x(T_{G_n^c} < \infty) = 1$. The c here denotes complement.
- 3. Outline of construction. Fix one of the sets $G = G_n$ and suppress the subscript. If $f_{\lambda}(x) = E_x^*(1 \exp(-\lambda T_{g^c}^*))$, $\lambda > 0$, then f_{λ} is excessive for the process X^* terminated when it first leaves G. By a theorem of Dynkin [1] it is then also excessive for X similarly terminated. One can show that f_{λ} is regular enough that arguments of Sur [5] and Volkonskii [6] apply to it and yield a continuous additive functional $\phi_{\lambda}(t)$ satisfying $E_x\phi_{\lambda}(T_{g^c}) = f_{\lambda}(x)$. One next shows that $\lambda^{-1}\phi_{\lambda}(t)$ increases, as $\lambda \to 0$, to a continuous strictly increasing additive functional which, reintroducing the index n, we call $\phi^n(t)$. The ϕ^n for varying n are shown to be compatible in the sense that if m > n then for

¹ During the course of this research all three authors were partly supported by the National Science Foundation.

all x with P_x probability one $\phi^n(t) = \phi^m(t)$ throughout the interval $t < T_{\sigma_n^s}$. The limit as $n \to \infty$ of $\phi^n(t)$ is a continuous additive functional $\phi(t)$.

The desired time change $\tau(t)$ is the functional inverse to ϕ . That $X(\tau(t))$ is equivalent to $X^*(t)$ follows from the computation of certain potentials.

- 4. Remarks. Usually the hypothesis (h_2) may be eliminated. For example if the semi-group for one of the processes leaves invariant the space of bounded continuous functions on E then (h_1) alone implies the existence of the desired time change.
- In [3] there appears a more explicit form of our result in case X is Brownian motion in Euclidean space and X^* is a diffusion process with the same hitting distributions. The construction makes use of potential theoretic facts which are available for transition functions having a sort of symmetry, but not for those as general as the ones we consider here.

The results announced here are also valid for processes having finite terminal times.

REFERENCES

- 1. E. B. Dynkin, Intrinsic topology and excessive functions associated with a Markov process, Dokl. Akad. Nauk. SSSR 127 (1959), 17-19. (Russian).
- 2. G. A. Hunt, Markoff processes and potentials. I and II, Illinois J. Math. 1 (1957), 44-93, 316-369.
- 3. H. P. McKean, Jr. and H. Tanaka, Additive functionals of the Brownian path, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 33 (1961), 479-506.
- 4. P. A. Meyer, Fonctionelles multiplicatives et additives de Markov, Thèses, Université de Paris, 1961.
- 5. M. G. Šur, Continuous additive functionals of Markov processes and excessive functions, Dokl. Akad. Nauk. SSSR 137 (1961), 800-803. (Russian). Translated in Soviet Mathematics 2 (1961), 365-368.
- 6. V. A. Volkonskii, Additive functionals of Markov processes, Trudy Moskov. Mat. Obšč. 9 (1960), 143-189.

THE INSTITUTE FOR ADVANCED STUDY,
THE UNIVERSITY OF WASHINGTON AND
MASSACHUSETTS INSTITUTE OF TECHNOLOGY