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In the present note we explain briefly our method and state the 
theorems without proofs. These things will be explained in detail in 
a subsequent paper, which will be published in another journal. Our 
problem is the following. 

POINCARE CONJECTURE. Any simply-connected closed2 3-manifold, 
i.e., any homotopy 3-sphere, is a 3-sphere. 

The generalized Poincaré conjecture has been proved for dimen­
sions £ 5 by S. Smale [9], J. R. Stallings [lO], E. C. Zeeman [ l2] , 
and A. H. Wallace [ l l ] . For dimension 4 nothing is known, to the 
best knowledge of this author. 

1. The diagram. Let M = l U T , where M is an orientable closed 
3-manifold, T and V are handlebodies8 of the same genus £ ( â 0 ) , 
and iV = bd T = b d T'= TC\T' is an orientable closed2 surface of 
genus p. We then say that M = T^JT' is a Heegaard splitting of genus 
p of M. Let Aiy Bi, i — 1, • • • , p, be a fundamental system of N based 
at o, i.e., the A,B's are simple loops on N based a t o, having only the 
point o in common, and such that if we cut N along the A,B's we 
obtain a 2-cell with boundary 

f l AiBiA7lB7l. 

From now on, unless otherwise stated, we suppose that p^2. Let 
A^ Bi be a system as above, such that4 Af^X) in ÜH. Let </>: N-+N be 
an homeomorphism, such that $(^4*)—0 in V. Let \{/: F-+F be the 
automorphism induced by <£, where 

p 

iri(2V, o) « F = {ah bh • • • , aP9 bp: JJ lai, *<])> ^ 2 . 

1 The author is an Alfred P. Sloan Foundation Research Fellow. 
2 Closed means compact without boundary. 
8 Henkelkörper vont Geschlechte p [8, p. 219, §63]. In my previous papers [5, p. 281; 

7, p. 325, No. 10], I called these solid tori of genus p . However I now adopt the term 
handlebody of genus p since it has been used in the literature. 

4 £^ means homotopic to, ^> means homologous to. 
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Let finally6 A = {au • • • , a p ) , A = 4 ^ ( i ) , Â = ( i , ^ ( i ) } , 

THEOREM (1.1). TTI(M, O)^F/K. Therefore M is simply-connected 
if and only if k~F. 

This is proved directly from the above. 

LEMMA (1.2). The groups A/A, \[/(A)/&, Â/A, and F/1L have no ele­
ments of finite order. Â, A are normal subgroups of F, such that ACÂ 
and l -^A-^F. 

Tha t A 5̂  1 is proved using some properties of F, which are obtained 
from the Poincarê model of the hyperbolic plane, as this is used in the 
Nielsen theory, see for example [3; 4] . The other properties are 
proved using group theory. From A 9e 1 follows. 

THEOREM (1.3). There exists on N a loop L, which is qkO on N, but 
it is ^ 0 both in T and T'. However L is not simple, generally. 

Let r : T—*T or r ' : T'-*T' be the universal coverings of T or T1 

respectively, and let i? = bd T, i?' = bd T'. The following is proved 
using geometric techniques. 

LEMMA (1.4). N and N' are planar6 surfaces. 

Let us consider the diagram 

D 

e 

TD N 

T 

N'CT1 

T 

6 ( • • •) means the smallest normal subgroup of F, containing the elements 
« Planar surface is one that is homeomorphic to an open connected subset of a 

2-sphere. 
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where 7/3: D—*N and 7 : D—>N are the regular coverings correspond­
ing to the normal subgroups A and Â of F respectively. Moreover 
7j8a: D—*N is the regular covering corresponding to a normal sub­
group A of F, where I T ^ A C A and which will be defined more pre­
cisely later on. Finally D is the Poincaré model of the hyperbolic 
plane. 

The problems related with A and D form the main difficulties of 
our method. We emphasize that, A may be = or F^A. 

2. Geodesoids. Let us consider the sequence 

f • V 
D-* D-+N 

where rj: D—>N is the regular covering corresponding to the (not 
necessarily proper) normal subgroup A?* I of Fy and $*• D—>D is the 
universal covering of D. 

An oriented closed curve G on Z), which has a t most "double" 
points and which is QkO on D, is called a geodesoid if Ç~X(G) consists 
of simple arcs, such that any two different ones have at most one 
point in common, but no end point in common. 

LEMMA (2.1). Let G be a geodesoid on D and let J be an oriented closed 
curve on D, which has at most "double" points, such that Jc^G on D. 
Then the number of double points of G is ^ the number of double points 
of J, i.e., c(G)^c(J)} and if equality holds then J is a geodesoid. 

This is proved using the fact that D is the Poincaré model of the 
hyperbolic plane, and using the properties of the geodesies on D cor­
responding to the elements of F. The geodesoids have the main 
properties of the geodesies, but also "flexibility". 

Let us now consider the sequence 

0 - £ . v 

where 7]: D-+N and rj%: D—*N are regular coverings, corresponding to 
the normal subgroups À and A of F, and having the following prop­
erties (2.2)-(2.4). For the purposes of this No. 2 it is not needed to 
suppose that A c A as was supposed in No. 1. 

(2.2) A is a nontrivial proper subgroup of Â, but A may not be a 
proper subgroup of F. 

(2.3) À/A has no elements of finite order, 
(2.4) 2) is planar* 
Let (2), D) be the set of all geodesoids of D, which are covered just 

once by simple geodesoids of D. Using the geodesies on D, we prove 
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that (Dy D)9é0. For any G£(JÖ, D) we define the notions of com­
plexity c(G) and complementary complexity C(G) of G, just as we did 
in [5, pp. 282-283] for circuits. We say that GÇz(D, 25) is an extremal 
element of this set, if there is no JÇL(D, D) such that, either c(J) 
<c(G), or c(J) = c(G) and C(J)<C(G). 

THEOREM (2.5). Under the conditions (2.2)~(2.4), any extremal ele­
ment of (Z), D) is simple. 

The proof of this is very complicated. I t makes use of an operation 
by means of which I proved the loop theorem [5, p. 281, Theorem 
(1) ]. However the short cut due to J. H. C. Whitehead, and explained 
in [5, pp. 285-293], does not work here, while the longer operation 
(unpublished) works almost word for word. 

3. Necessary and sufficient conditions for the decomposition of 
3-manifolds. We now return to the notations and conventions of 
No. 1. The following is the key theorem of this note. 

THEOREM (3.1). There exists a simple loop L on N, such that LqkQ 
on N, and L ~ 0 both in T and T' if, and only if, there exists a normal 
subgroup Â of F, such that 1 ^ Â C ^ , F/R has no element of finite order, 
and D is planar. 

PROOF. The sufficiency of the conditions is proved the following 
way. Consider the diagram of No. 1. Here we use the fact that 
A C A. Suppose now that À== F, whence D = N. Let L be an extremal 
element of (N, D). By Theorem (2.5), L is a simple loop on N. Let 
L be a loop on D covering L. Then 

L = y0a(L) = v\a(L) ~ 0 in T, 

- v'\'a(L) ~ 0 in r 

because Xa(Z)~0 in T, X 'a(Z)~0 in ? ' , because T and f' are uni­
versal coverings of T and V respectively. Moreover LqkO on N, be­
cause L is a geodesoid on N. The proof of the necessity of the condi­
tions does not make use of the notations introduced above, but it is 
involved. 

The above theorem (3.1) helps us explain the cause of the difficulty 
of the classification problem for orientable closed 3-manifolds. 

(3.2) The complexity of the classification problem for orientable 
closed 3-manifolds is due to the fact that : there exist covering spaces of 
planar6 surfaces which are not planar. 
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Let us suppose tha t : any regular covering space of any planar 
surface is planar. Then D is planar, because so is fit, see Lemma (1.4). 
By Lemma (1.2), F /S has no elements of finite order and l ^ A . 
Thus by Theorem (3.1), Dehn's Lemma [ô], and induction on p 
would follow that any orientable closed 3-manifold would be the 
composition of a 3-sphere with handles7 and a finite number of 
lens spaces.8 Hence the cause of our difficulties is the following. 

(3.3) Generally, D is not planar. 
The following remarks of R. H. Fox indicate that Proposition (3.2) 

is not as awkward as it may look: let S—»S be a finite sheeted 
branched covering over the 2-sphere 5. Deleting the branch points of 
S and their projections on S, we obtain an (unbranched) covering 
S'—>S'. I t is well known that among all possible S there are surfaces 
of genus > 0 . Therefore among all possible 3' there are nonplanar 
surfaces, while all possible S' are planar. 

4. Homotopy spheres. Let us now suppose that AT is a homology 
3-sphere, and let T be a handlebody of genus p*£l, semi-linearly im­
bedded in M, and let JV = bd T. The following holds. 

THEOREM (4.1.). If M is a homology 3-sphere, then there exists a 
system of oriented simple closed curves Xj, Y3, j=l, • • • , p(*zl), on 
N such that: (i) the X- or Y-curves are disjoint; (ii) Xj meets only Yj 
and only at one point; (iii) if we cut N along Xj and Yj we obtain a 
2-sphere with p holes, having boundaries XjYjXflYfl; (iv)4 XjC^O in 
T, and Yj~0 in c l ( M - T). 

The case p~ 1 has been proved by M. Dehn [ l ] . The case p^2 is 
proved by induction and the proof is rather geometric. We call 
Xjt Y h J — l» * * * i Pi a meridian-longitude system of TC.M and 
Theorem (4.1) is called the "meridian-longitude theorem". 

Let us now suppose that M is an homotopy 3-sphere and let 
M= r u i ' be a Heegaard splitting of it. By Theorem (4.1), there is 
a meridian-longitude system Xj, Yj or Xj , Yj of TQM or T CM 
respectively. The Theorem (1.1), in conjunction with an algebraic 
lemma, enable us to perform two elementary transformations of the sys­
tem Xj, Yj, by means of which, we obtain the following. 

THEOREM (4.2). If M is a homotopy 3-sphere, and if Xj, Yj, 
j = l , • * • , £ ( = !)> is a meridian-longitude system of T'QM, then 

7 See [6, p. 23, §8]. 
8 This is not true, because there are orientable closed 3-manifolds with finite not 

cyclic fundamental group, see [8, pp. 216-218]. 
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there exists a meridian-longitude system Xj, Yj of TQM, such that 
Yj~Xj on JV. 

By an isotopic deformation of each one of the pairs Xj, Yj and 
Xj, Yj on JV, we obtain new systems Aj, Bj and Aj, Bj based at 0, 
such that both Aj, Bj and Aj, Bj, j = l , • • • , £ , are fundamental 
systems of JV. Let us denote by aj, bj, aj the elements of 7Ti(JV, 0) 
corresponding to Aj, Bj, Aj respectively. By Theorem (4.2), aj — bjTj, 
where r y £ [<ï>, <£], and 3> is the free group freely generated by 
0i, fa, • • • , ap, bP. 

5. Two conjectures. Let us now consider the special case where one 
of the r 's , say n , is 1. Let us define6 A=([a i , a{ ]). Then using the 
Poincaré model of the hyperbolic plane, we prove that 

l ^ Â C (ah • • • , ap) P\ H(ah • • • , ap)), p è 2. 

F/Â « (ai, 61, • • • , a„ bp: Y[ [a{, J j , [ai, &i]) 
t - i 

V 

~ (01, 61: [ai, ôi]) * (<z2, Ô2, • • •, ap, bp: J J [a<, 6t]) 

and therefore it has no elements of finite order. Finally the regular 
covering D of JV corresponding to A is planar, because there exists a 
simple loop homotopic on JV to the loop representing \a\, fa]. Thus 
by Theorem (3.1), there is on JV a simple loop L, which is ç&0 on JV, 
but ~ 0 in both the handlebodies T and JP . 

The above suggests that something similar may happen in the 
general case, where all r ' s are 9^ 1. This leads us to the formulation of 
the following two conjectures. 

(5.1) For some subset (m, • • • , n) of (1, • • • , p) the group 
(ai, b\, • • • , ap, bp: H ? - i [a*> &»]> [a»> bmrm], • • • , [<zw, &wTn]) 
&as wo elements of finite order, where rm, • • • , rn are G [$, $ ] . 

(5.2) r&e regular covering space DT of JV, corresponding tob S r 

= ( k , bmTm], • • • , [aw, &nTn]), w planar.6 

In our problem &mrm = a'w, • • • ,bnrn~an are represented by simple 
loops on JV. This condition may turn out to be very important for the 
validity of the conjectures (5.1) and (5.2). 

We observe that , the group of covering translations F/AT of the 
regular covering DT—>JV is the one appearing in (5.1). 

Actually the conjectures (5.1) and (5.2) imply the Poincaré con­
jecture. However they seem to be very hard problems indeed. 

As far as the conjecture (5.1) is concerned see A. Karrass, W. Mag-
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nus and D. Solitar [2]. We intend to handle the conjectures (5.1) 
and (5.2) in subsequent notes. 

The author of the present article would like to express his gratitude 
to Professor R. H. Fox, for many and valuable discussions. 
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