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A bounded linear transformation a on a Banach space L, to a 
Banach space M, is called regular (see [9, Part I I , Chapter 2; 2, 
pp. 25-26]), in case there is a bounded linear transformation x on 
M to L, such that axa —a. The transformation a is possibly regular 
only if it is of type IIA [13; 14], that is only if the null space 91(a) 
of a has a closed complement 9lc, and if a restricted to 9lc is an iso­
morphism g of 9lc onto the range (R(a) of a. For such an a, the 
projection p through 91(a) onto 9lc is bounded. Then in order that 
axa —a, it is necessary and sufficient that x be a bounded linear ex­
tension to M of the inverse isomorphism g -1 . In this case clearly xa 
is the bounded projection p of L through 91(a) onto 9lc, and ax is a 
bounded projection q oî M onto (R(a). Therefore even if a is of type 
IIA so that the bounded projection p exists, the transformation a can­
not be regular if there is no bounded projection q of M onto (R(a). 
In case the extension x exists so that a is regular, the transformation 
b = px = xax on M to L is a relative inverse [2 ] of a ; that is aba = a and 
bab — b. In case L and M are Hilbert spaces, g is isometric, and p and 
g are orthogonal projections, the relative inverse b coincides with the 
adjoint a* of a. (Every bounded linear transformation on a Hilbert 
space to a Hilbert space necessarily is of type IA or IIA.2) 

For reasons including those suggested in the preceding paragraph, 
relations between various properties concerning projections and ex­
tensions in Banach spaces are of interest. In this note the equivalence 
of several such properties, which are seemingly different, is estab­
lished. The main result is the equivalence of the extension property 
to the uniform extension property. (See the next sections for defini­
tions.) This is a consequence of the following theorem. 

THEOREM 1. If a Banach space B has the property that there is a 

1 This research was supported under Contract No. AF 49 (638)-1055, by the Air 
Force Office of Scientific Research. 

2 For suppose that a is bounded on a Hilbert space L to a Hilbert space M. In 
order that a be of type IB or I IB, it would be necessary that every complement of 
91(a) be not closed, but the orthogonal complement is closed for any 91(a). In case 
a is not of type IIA, then neither (R(a) nor (R(a*) is closed, and it follows from (ax, y) 
= (x, a*y) that the closure of (R(a) is the orthogonal complement of 9l(a*), and that 
the closure of (R(a*) is the orthogonal complement of 91(a). An a of type IA is not 
regular, and its adjoint a* is not a relative inverse of a. 
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bounded projection of C onto B, for every Banach space C which is a 
super space of B, then there exists a constant K = K(B), independent of 
C, such that for each super space C, there is a projection onto B having 
bound less than or equal to K. 

1. Projection and extension properties. A Banach space L will be 
said to have the extension property if each bounded linear transforma­
tion u from any linear subspace R of any Banach space M, into L, 
has a continuous linear extension U on M with range in L. A Banach 
space B has the projection property in case for any superspace C con­
taining B which is also a Banach space, there exists a bounded pro­
jection of C onto B. A finite dimensional space L, for example, has 
both the extension and the projection properties. 

For regularity of a, extensibility only of the isomorphism g~l is 
required. A Banach space L has the extension property for isomor­
phisms into in case each isomorphism u of a subspace R of M into 
L can be extended to be a bounded linear transformation on M into L. 
If M is a copy of L, of course the identity on R to R can be extended 
to be the identity on L to L. 

THEOREM 2. For any Banach space B, the extension property f or iso­
morphisms into, the projection property, and the extension property, are 
all equivalent] i.e. if B has any one of the properties, it has all three. 

PROOF. If u is the identity on B QC to a copy of B, then the exten­
sion U to C of u is a projection of C onto J3; thus the extension 
property for isomorphisms into implies the projection property. 

An extension theorem of [13] states that for any bounded linear 
transformation on a subspace, there always exists a bound-preserving 
extension if enlargement of the range is permitted. By that theorem, 
u on RQM to B has an extension F on M to C~Z)B with j V\ = \ u\ ; 
if p is a continuous projection of C onto B, then U = pV is an exten­
sion of u with bound not exceeding \p\ *\u\. Therefore the projection 
property implies the extension property. Finally, the extension prop­
erty in particular implies the extension property for isomorphisms. 
Therefore all three properties are equivalent. 

We note the following property, which is a consequence of the dis­
cussion of regular elements a, for a Banach space B which has the 
extension property: The existence or nonexistence of a continuous 
projection of B onto a linear subspace D is independent of the par­
ticular imbedding of D in B\ i.e. if DiQB is any subspace isomorphic 
with D, then there is a continuous projection of B onto D\ if and only 
if there is one onto D. 



j962] EXTENSION PROPERTIES OF BANACH SPACES 219 

THEOREM 3. If a Banach space B has the extension property, and if 
there is a continuous projection of B onto a linear subspace D, then D 
has the extension property. If -B = 5i©J32 , where B\ and J52 both have 
the extension property, then B has the extension property. 

PROOF. Let u be a bounded linear transformation on a subspace 
RC.M to DC.B, and p the projection of B onto D. Since B has the 
extension property, there is a bounded extension V with range in B. 
Then U = pV is the required continuous linear extension with range 
in D. 

If B = Bi®B2, then u£ = ui£+U2£, ui^GBlf U2%C£B2. We have 
| Ui^+U^\ û(\Ui\+\U2\) | £ | , where Ui is the continuous exten­
sion with range in B\ of U\, and U2 is the continuous extension with 
range in J32 of «2. Therefore U= Ui+ U2 is a continuous extension of 
«, with range in 5 , as required. 

Theorems 2 and 3 transform a question of the author (in [ l l ] ) , of 
whether there exists any separable, innnite-dimensional subspace W 
of the Banach space (m) of all bounded sequences, which has a con­
tinuous projection from (w), into the following: Does there exist any 
separable, infinite-dimensional Banach space W which has the exten­
sion property? Such a space W could be imbedded in the space (C) 
of continuous functions on a closed interval, which in turn is im­
bedded in (m). (As shown in [ l l ] , the separable spaces (c0) and (C) 
do not have the extension property.) The result of [6] suggests the 
questions: Does there exist a separable, infinite-dimensional space of 
continuous functions on an extremally disconnected compact Haus-
dorff space? An affirmative answer to this would provide an example 
of a space W. Is any W necessarily isomorphic to such a space? Is 
there any infinite-dimensional subspace of (co) which has the exten­
sion property? (It is shown in [12] that (co) contains a subspace 
which has no continuous projection from (c0).) Is the intersection of 
all subspaces of (m), which contain (c0) and have the extension prop­
erty, a space which has the extension property? (Conceivably it might 
be (co), or a subspace Z^)(CQ), such that there is a continuous projec­
tion of Z onto (co)—in that case, by Theorem 3 the space Z does not 
have the extension property.) 

A linear space I , such that each IIA bounded linear transforma­
tion a of L into itself is regular, must have the property: (1) that each 
isomorphism x to L, from a subspace of L which is a possible range 
(R(a), can be extended to be a continuous linear transformation on L 
to L. Hilbert space has property (1), which is weaker than the exten­
sion property. Property (1) of L evidently is equivalent to each of 
the following: (2) every IIA bounded linear transformation on L to 
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L is regular, (3) if a subspace of L has a continuous projection from 
L in one imbedding, it has a continuous projection from L in any 
other imbedding. (In particular, if L is isomorphic with a proper sub-
space, there must exist a continuous projection of L onto the sub-
space.) 

2. Uniform properties. A Banach space L has the uniform extension 
property with bound K, in case it has the extension property and each 
bounded linear transformation u from a subspace R into L can be ex­
tended to the whole space M, with multiplication of the bound of u 
by not more than Ki, K — ini K\\ i.e. for arbitrary €>0, extension is 
always possible with multiplication of the bound by not more than 
(K+e). (See [l].) Similarly a Banach space B has the uniform projec­
tion property with bound K, if projection of C onto B is always possible, 
with bound not exceeding K+e, and K = K(B) is the smallest pos­
sible number having this property for the Banach space B. 

The following theorems for the uniform properties, which corre­
spond to Theorems 2 and 3, are obtained by slight additions to the 
proofs of those theorems. 

THEOREM 2a. If a Banach space B has the uniform extension property 
for isomorphisms into with bound K^ the uniform projection property 
with bound K, and the uniform extension property with bound Ki, then 

THEOREM 3a. If a Banach space B has the uniform extension property 
with bound K, and if there is a continuous projection p of B onto a linear 
subspace D, then D has the uniform extension property with bound not 
exceeding \p\ *K. If B=B\@B^ where B\y J32 have the uniform exten­
sion property with respective bounds Ki, K2, then B has the uniform ex-
tension property with bound not exceeding K1+K2. 

A finite-dimensional example in [ l ] shows that if & = inf \p\ for 
all continuous projections of B onto D, the uniform bound Kz for D 
may be less than kK. 

Banach spaces having the uniform extension property with bound 1 
have been characterized [4; 8; 6] as spaces of all continuous functions 
on an extremally disconnected compact Hausdorff space. The space 
(m) of all bounded sequences, for example, has this property. Since 
also (m) has no continuous projection onto its subspace (c) of con­
vergent sequences [lO; 11 ], there does not exist a bounded linear 
transformation of type IIA of (m) onto any space M which is iso­
morphic with all of (c). Open questions: Does there exist any bounded 
linear transformation a on (m) to (c), with (R(a) = (c)? Is each Banach 
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space which has the uniform extension property with bound K} K > 1, 
isomorphic with a Banach space which has the uniform extension 
property with bound 1? 

3. Separable spaces. Similar properties may be defined for a sepa­
rable Banach space B, in terms of Banach superspaces which are 
restricted to being separable. 

THEOREM 4. The Banach space (CQ) has the separable uniform projec­
tion property with bound 2. The Banach space (c) has the separable uni­
form projection property with bound 3. 

PROOF. I t is shown in [ l l ] that for any separable subspace W of 
(m) which contains (c0), there is a projection of bound 2 of W onto 
(c0), and in [7] tha t for any separable subspace Z of (m) which con­
tains (c), there is a projection of bound 3 of Z onto (c). Suppose that 
B is any separable Banach superspace of say (c). As in the discussion 
of regular elements, let g be the isometry of {c)C(m) onto (c) C.B. 
Since (m) has the uniform extension property with bound 1, a bound-
preserving extension x of g"""1 to B exists. The range (R(#) C(m>) and 
its closure are separable since B is separable. Therefore there is a 
projection p = xa of bound not exceeding 3 of (R(x) onto (c). Then 
q = ax is the required projection of bound not exceeding 3 of B onto 
(c). Since as shown in [ l l ] and [7], the bounds 2 and 3 are the best 
possible, it follows that (c) has the separable uniform extension prop­
erty with bound 3, and that (co) has the separable uniform extension 
property with bound 2.8 

The subspaces of (co) and (c), for which there is no continuous 
projection, as given in [12], do not have the separable extension 
property. 

The space C(E) of continuous functions on a compact Hausdorff 
space E is separable if and only if E is metrizable [15, p. 245]. There­
fore the question of whether there is a separable Banach space which 
has the uniform extension property with bound 1 is equivalent to 
the question of whether there is an extremally disconnected compact 
Hausdorff space E which is metrizable. (The following final section of 
course shows that the adjective "uniform" may be omitted.) By an 

8 A separable space L, such as (c) or (CQ), which has the separable extension prop­
erty, has the property numbered (3) above. Also any transformation from an arbitrary 
separable space M to such an L has a continuous extension, with range in L. 

The following modified property implies, but is not equivalent to, properties 
(1), (2), (3): (4) for each isomorphism g of a subspace of L onto a subspace of L, 
either g or g""1 has a continuous one-to-one linear extension to all of L, with range in L. 
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Urysohn theorem, E is metrizable if and only if it is separable.4 

4. Proof of Theorem 1. We require the following lemma. 

LEMMA. If two Banach super spaces B%, B% of a Banach space B have 
only B in common, and if there exist continuous projections pi, p2 of 
respectively Bi, 5 2 onto B, then there exists a Banach super space C 
which has Bi and B% as subspaces. 

PROOF. If B{, Bl are the respective closed complements of B in 
Bi, B2 which are the null spaces of pi, p2, consider the Cartesian 
product B XB{XB{. With the usual definitions of addition and scalar 
multiplication, this Cartesian product is a linear space which has Bi 
and B2 as subspaces. Define a norm in BXBiXBl as follows: 
II (£> £1 » £2 )|| = s u p I Y(£, (-1, £2 ) | over all linear functional 7 on the 
Cartesian product which simultaneously satisfy |T (Ç + £ I ) | 
^ | | € + t f | | i in Bi and | ? ( £ + # ) | S||É+tf| |* in Ba, where £GJ3, 
ÜGB{, üeB{. Then in Bh \\C+Ü\\ =| |£+£i ' | | i , and in B,, \\t+tt\\ 
= ||£+£2 H2, where || ||i, || [[2 respectively are the norms of B%, B2. The 
required Banach space C is the completion of BXBlXBi with the 
norm || ||. 

Proceeding with the proof of the theorem, assume that B has the 
projection property, but not the uniform projection property. Then 
there exist a sequence of superspaces Bi, J52, J33, • • • , with minimal 
bounds for projections onto B of Ki, K2, Kz, • • • , with Ki<K2 

<Kz< • • • , and i£n—» °°. We may consider Bi, 5 2 , • • • to be spaces 
which have only B in common. Using the Lemma repeatedly, we 
define a sequence of superspaces Ci, C2, • • -, with Ci C G C CzC • • •, 
as follows. Space C1 — B1; C2 is the common superspace of Ci and J32; 
Cz is the common superspace of C2 and 5 3 ; • • • . Any projection of 
Cn onto B in particular is a projection of Bn onto B; therefore the 
minimum bound for projections of C„ onto B is greater than or equal 
toKn. 

The union C1VJC2WC3VJ • • • is a linear space, if addition £+77 
and scalar multiplication h% are defined to coincide with addition and 

4 Added note: It is shown in [l6] that C(E) is separable if and only if E is a finite 
set. Therefore if an infinite-dimensional B is separable and has the extension property, 
necessarily the bound K is greater than 1, and B is not isomorphic with a space C(E). 
Is such a B always isometric with a complemented subspace of a space C(E)? Yes, 
for the following reasons. As in [16], ( W Î ) C C ( Ê ) for every infinite E. An isometric 
imbedding of (C) in (m) is given in [ l l ] , and (C) is a universal imbedding space for 
separable spaces. Consider the isometry g of -5iC(OC(w) onto B. Since B has the 
extension property, g has a continuous extension to (m), and Bi is therefore comple­
mented in (m), also in every C(E) since (m) has the projection property. 
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scalar multiplication in the space Cy which contains £, rj. Define a 
norm in the union by ||£|| =||ê||n, where | | j | | n is the norm in the first 
Cn which contains £. Then contrary to assumption, the completion 
of the union is a Banach superspace of B which cannot have a con­
tinuous projection onto B. Therefore as was asserted, the projection 
property implies the uniform projection property.5 

Following is a further delimitation of the class of infinite-dimen­
sional, separable Banach spaces B which have the projection prop­
erty. If p is a continuous projection of (m) onto B(Z(tn), and g is 
an isometry of BC_(m) to BQ.C, where C is an arbitrary Banach 
superspace of B, then a — gp is a IIA transformation on (m), with 
(Si{a) ~B C.C. Since (m) has the extension property, there is a con­
tinuous extension x of g"1, and then q = ax is a continuous projection 
of C onto B. As a consequence of this, of Theorem 1, of result (12) 
on p. 96 of [l8], and of Theorem 2 of [16], the space B neither can 
be reflexive, nor possess an unconditional basis. Space (C) qualifies 
[l8, pp. 73-77], but it is not a space B. The results of [17] suggest 
that perhaps also all the successive conjugate spaces 5* , 5**, • • • 
must be separable. 
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