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In the present note we prove the following theorem:

THEOREM. Let {tk} (k= %1, +2, - - ) be a sequence of real numbers
such that t,>0 and t_y= —1t; for any k>0 and that t;—0 as k— . Let
f@) be a positive-definite function of the real variable t and let Y(2) be
a function of the complex variable z (3=t-+1v, t and v both real) which
1s regular in a circle about the point 2=0. Suppose that the function
f@) coincides with (&) for every value of the sequence {tk} Then f(t)
cotncides with Y (t) for all real t.

PROOF. Let the function y/(z) be regular in the circle | z| <R (R>0)
about the point z=0. Then for every real ¢ in the interval || <R
we have

o t]'
V() = 2 (o + ;) —
7=0 J:
where a; and 3; are real numbers. Let 4 (¢) and B(¢) denote respec-
tively the real and imaginary parts of ¥ (¢) so that

© 7
AQ@) = Za,-i,— and B() = ZB, -
=0 J! =0 7!
We now make use of the hermitian property of f(f) and the equation
f@) =¢¥(#) and obtain easily the relations A(—tx) =4 () and
B(—tx) = — B(t) holding for every value of the sequence {f;}. Since
the point =0 is the limit point of the sequence of real numbers
{t:}, we can verify easily that

t21+1

A@) = Z:o Qg T ( Y and B(t) = g Bejr1 2+ D!
for all real ¢ in |¢| <R.

We next introduce the functions g(¢) = f(&)f(—¢) and 6(2)
=y (2)¥(—2) (z=t+1v, t and v real) and note the following: The func-
tion g(t) is a real-valued, even and positive-definite function of the
real variable ¢; the function 6(2) is regular in the same circle [zl <R
about the point 2=0 and for real ¢
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00) = | v |* = {40} +{BO)}* = 2 ve
im0 (2!
where 7,; is real and therefore 0() is a real-valued and even function
of ¢. Before proceeding further we first prove the following lemma:

LeMMA. The function g(t) has finite derivatives of all orders for every
real ¢.

ProorF oF THE LEMMA. We can represent g(¢) in the form g(¢)
= [*, cos txdG(x) where G(x) is a nondecreasing function of bounded
variation. We show first that the function g(¢) can be differentiated
twice for any real {. We note that the relation g(¢) =60(¢) holds for
every value of the sequence {t:}, t+—0 so that we must have g(0)
=0(0) and therefore vo=[2,dG(x) >0. Thus for every value of the
sequence {fi} #—0 we have

&) — g(0 6(¢4) — 6(0
B~ 60) _ 00 —80) _ 7 s
e I 2
so that
. 8t) —g0) 72
lim ———— = —
k— o tk 2
exists and is finite. But we note that
. th
) — 5(0) )
g__"_2_g__ = —2 f —— G
tk — tk

and therefore

tends to a finite limit as #—0. Then we use Fatou's Lemma and
deduce immediately that [ .x%dG(x) < », that is, | g”(0)| < «. But
it is well known that the existence of the 2pth derivative of a positive-
definite function at the origin ¢=0 ensures that it is differentiable
2p times for any real f. Therefore g’/ (f) exists and is finite for any
real . We now prove the lemma by induction. We suppose that the
function g(#) has finite derivatives up to an even order 27z and then
show that the derivative of order 2n+2 will also exist. We note that



390 R. G. LAHA [September

the function g(t) —0(¢) is real-valued, even and can be differentiated
2n times and further vanishes for every value of the sequence {#},
1x—0. We now apply the Theorem of Rolle: Between two zeros of a
differentiable function there exists at least one zero of its derivative. There-
fore, it follows that the function g’(¢) —6’(¢) vanishes for every value
of a sequence {f,} of real numbers, t;,—0 which lie between the
numbers of the sequence {tk} We thus apply Rolle’s Theorem suc-
cessively 2n times and finally conclude that the function g@®»(¢) co-
incides with the function 6% (¢) for every value of a sequence {tk,,,}
of real numbers, t,,—0. For simplicity in notation we denote this
sequence by {#/}. The relation g (t/)=6@»(t/) holds for every
value t{ , tf —0 so that we must have g (0) =602 (0) and therefore
(= D)™ygn=f2 ,x2dG(x) >0. Thus for every value of the sequence
{t/}, t{ =0 we have

£() = gEM(0) _ 0% G) = 0%(0) _ yamas

52 4 2 + 0@
so that
g) — g ()
lim
E—» tk’ 2

exists and is finite. But we can verify easily that
/

sin? —

(2n) t’ — p(2n)((Q L]
g () — g®(0) = (_.1)n+12f xzn___._tT;___d(;(x)
—0 k

2

so that the integral on the right-hand side tends to a finite limit as
t¢ —0. We apply again Fatou’s Lemma and deduce that f2, x2»*2dG(x)
< « that is, g?*+2(0) exists. Therefore g®**+? () exists and is finite
for any real ¢, thus completing the induction.

Now we turn to the proof of the theorem. We note that the func-
tion g(f) has finite derivatives of all orders and further g@»(0)
=0 (0) for every n. Hence we have

l g@m(0) | /2 l 6 (0) | 1
lim sup [——] = lim sup [————-—-——] = —
n—> o (2%) ! n— (2”) ! R

so that the positive definite function g(z) as a function of the complex
variable z is also regular in the circle |z| <R about the point z=0.
Then it follows immediately from the theorem of Raikov [3] that
the positive definite function f(2) is also regular in the same circle
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| 2| <R about the point z=0. Thus we conclude that both the func-
tions f(z) and y¥(2) are regular in the circle Izl <R and further note
that they coincide for every value of a sequence {tk} of real numbers,
tx—0. Therefore the functions f(z) and ¥(2) coincide for every z in
the circle ]z] <R. It then follows at once from the theorem due to
Boas [1] that the function f(f) coincides with ¥(f) for every real ¢
and further the function f(z) (2 complex) is regular in the strip
|Im 2| <R.

The following corollary is an immediate consequence of the above
theorem:

COROLLARY. Let f(2) be a real-valued, even and positive-definite func-
tion of the real variable t and let Y (2) be a regular function of the complex
variable z such that Y(t) is real-valued and even. Suppose that f(t) co-
incides with Y(t) for every value of the sequence {ti} of real numbers,
1:—0. Then f(t) coincides with Y (t) for every real t.

This result has been proved by Linnik in [2] under the additional
condition that the function ¥(¢) is also a positive-definite function.
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