SMALL ISOTOPIES IN EUCLIDEAN SPACES AND 3-MANIFOLDS¹

BY JAMES KISTER

Communicated by Edwin Moise, October 6, 1959

- 1. Introduction. The general type of question considered here is: what homeomorphisms of a space or of a set are obtained by isotopic deformations of a space by a small amount. Although questions of this type have only recently been treated explicitly and for their own sake (e.g. [2; 3; 5; 6; 7]) they had been handled implicitly in work done by Alexander [1] and Kneser [4] some 35 years ago. In fact this paper owes much to the method of Alexander, rediscovered in a slightly different form.
- 2. **Definitions.** Let M be a manifold with boundary having a metric d. Denote by $\mathfrak{M}(M)$ the set of all homeomorphisms of M onto itself. Define a function ρ of $\mathfrak{M} \times \mathfrak{M}$ into the extended real number system as follows: $\rho(f, g) = \sup_{x \in M} d(f(x), g(x))$. f and g are ϵ -isotopic if there is an isotopy H_t , $t \in I$, so that $H_0 = f$, $H_1 = g$ and if t_1 , $t_2 \in I$ then $\rho(H_{t_1}, H_{t_2}) \leq \epsilon$.

3. Results.

THEOREM 1. If f and g are in $\mathfrak{R}(E^n)$ and $\rho(f, g) = \epsilon < \infty$ then f and g are ϵ -isotopic.

PROOF. By the right invariance of ρ it follows that $\rho(f,g) = \rho(1,gf^{-1})$ and if 1 and gf^{-1} are ϵ -isotopic under H_t then f and g are ϵ -isotopic under $H_t f$. Hence it suffices to prove the theorem for f=1. In this case, using vector notation for points in E^n , let $H_t(x) = tg(x/t)$ for $0 < t \le 1$ and let $H_0 = 1$. The continuity of $H_t(x)$ in t and x is clear for t > 0 and assured for t = 0 by $d(x, H_t(x)) = td(x/t, g(x/t)) \le t\epsilon$.

This generalizes to E^n (and slightly strengthens) a recent result of Sanderson for E^3 [7]. Alexander's result follows immediately by restricting the isotopy H_t to the unit ball in E^n .

Another direction generalization can take is:

THEOREM 2. Let M be an arbitrary 3-manifold with boundary having a

¹ The author is indebted to Professor R. H. Bing for suggesting the problem answered by Theorem 1 for n=3, and for directing the thesis, partially summarized here, to which the solution of that problem inexorably led. This research was supported by a Gulf Research and Development Company Fellowship.

² All Euclidean spaces E^n will be assumed to have the usual metric. For more general manifolds the metric will be specified as needed.

triangulation Σ . Let d b the barycentric metric determined by Σ and let ρ be as defined above. Given any $\epsilon > 0$ there is a $\delta > 0$ so that if f, $g \in \mathfrak{FC}(M)$ and $\rho(f, g) < \delta$, then f and g are ϵ -isotopic.

PROOF. Only a sketch will be given here since the proof is quite long.

Again it suffices to let f=1. The proof is in four stages. If we restrict g to be close to 1 then on each 3-simplex T in Σ we can replace g by g' where $g' \mid \operatorname{Bd} T=1$ and g' agrees with g except in a small neighborhood of $\operatorname{Bd} T$. An Alexander-type isotopy on each T takes g' onto 1 moving no point far. The global isotopy has the effect of deforming g to a homeomorphism g_1 which is 1 except in a small neighborhood of the 2-skeleton. Next using [6] g_1 is modified to get g' which is the same as g_1 on cubes built over the 2-simplexes in Σ and is different from g_1 only near the 1-skeleton of Σ . An isotopy is pieced together again which deforms g_1 to a homeomorphism g_2 which is 1 except in a small neighborhood of the 1-skeleton. Two more reductions, near the 1-skeleton and 0-skeleton respectively, which are described on disjoint cubes near the 1-simplexes and vertices respectively, take g_2 onto the identity.

COROLLARY 1. If M is a compact 3-manifold with boundary, then h is isotopic to 1 if and only if $h = h_k h_{k-1} \cdot \cdot \cdot \cdot h_2 h_1$ where each h_i is the identity outside a polyhedral 3-cell.

COROLLARY 2. If L is a tame compact 2-manifold in any 3-manifold M and $\epsilon > 0$, there is a $\delta > 0$ so that if h is any homeomorphism of L into M moving no point more than δ and if h(L) is tame, then there is an ϵ -isotopy of M taking h(L) onto L pointwise and moving no point outside an ϵ -neighborhood of L.

This makes use of and generalizes a result of Sanderson [6].

COROLLARY 3. If M is a 3-manifold having triangulation Σ and $\epsilon > 0$ there is a $\delta > 0$ so that if h is a homeomorphism of the 2-skeleton K of Σ into M moving no point more than δ and such that h(K) is tame, then there is an ϵ -isotopy of M taking h(K) onto K pointwise.

QUESTION. In Corollary 3 can K be replaced by a 2-complex having no local separating points?

The author has been informed that G. M. Fisher and M. E. Hamstrom separately have obtained Theorem 2 for M a compact 3-manifold with boundary and that the former also obtained Corollary 1.

REFERENCES

- 1. J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. vol. 9 (1923) pp. 406-407.
- 2. E. Dyer and M. E. Hamstrom, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. vol. 25 (1958) pp. 521-531.
- 3. M. K. Fort, A proof that the group of all homeomorphisms of the plane onto itself is locally-arcwise connected, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 59-62.
- 4. H. Kneser, Die Deformationssätze der einfach zusammenhängenden Flöchen, Math. Z. vol. 25 (1926) pp. 362-372.
- 5. J. H. Roberts, Local arcwise connectivity in the space H^n of homeomorphisms of S^n onto itself, Summary of Lectures, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, 1955, p. 100.
- 6. D. E. Sanderson, Isotopy in 3-manifolds. II. Fitting homeomorphisms by isotopy, Duke Math. J. vol. 26 (1959) pp. 387-396.
- 7. ——, Isotopy in 3-manifolds. III. Connectivity of spaces of homeomorphisms, to appear in Proc. Amer. Math. Soc.

University of Wisconsin and University of Michigan