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1. Introduction. The general type of question considered here is: 
what homeomorphisms of a space or of a set are obtained by isotopic 
deformations of a space by a small amount. Although questions of 
this type have only recently been treated explicitly and for their 
own sake (e.g. [2; 3 ; 5; 6; 7]) they had been handled implicitly in 
work done by Alexander [ l ] and Kneser [4] some 35 years ago. In 
fact this paper owes much to the method of Alexander, rediscovered 
in a slightly different form. 

2. Definitions. Let M be a manifold with boundary having a 
metric d.2 Denote by 3C(M) the set of all homeomorphisms of M onto 
itself. Define a function p of 3CX3C into the extended real number 
system as follows: p(/ , g) =supzeM d(f(x), g(x)). ƒ and g are e-isotopic 
if there is an isotopy Hu / £ / , so that Ho=f, H\~g and if h> h€zl 
then p(Hh, Hh)^€. 

3. Results. 

THEOREM 1. Iff and g are in 5C(£n) and p(fy g) = e < <*> then f and g 
are e-isotopic. 

PROOF. By the right invariance of p it follows that p(/, g) = p ( l , gf~l) 
and if 1 and gf"1 are e-isotopic under Ht then ƒ and g are e-isotopic 
under Htf. Hence it suffices to prove the theorem for / = 1 . In this 
case, using vector notation for points in £ n , let IIt(x)=tg(x/t) for 
0 <tS 1 and let H0~ 1. The continuity of Ht{x) in t and x is clear for 
t>0 and assured for / = 0 by d(x9 Ht(x)) =td(x/t, g(x/t)) ^te. 

This generalizes to En (and slightly strengthens) a recent result of 
Sanderson for E3 [7]. Alexander's result follows immediately by 
restricting the isotopy Ht to the unit ball in En. 

Another direction generalization can take is: 

THEOREM 2. Let M be an arbitrary Z-manifold with boundary having a 

1 The author is indebted to Professor R. H. Bing for suggesting the problem 
answered by Theorem 1 for » = 3, and for directing the thesis, partially summarized 
here, to which the solution of that problem inexorably led. This research was sup­
ported by a Gulf Research and Development Company Fellowship. 

2 All Euclidean spaces En will be assumed to have the usual metric. For more gen­
eral manifolds the metric will be specified as needed. 
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triangulation 2 . Let d b the bar y centric metric determined by 2 and let 
p be as defined above. Given any e>0 there is a 8 > 0 so that iff, g £ 3C(ikf) 
and p(f, g) < 5 , then f and g are e-isotopic. 

PROOF. Only a sketch will be given here since the proof is quite 
long. 

Again it suffices to let ƒ = 1. The proof is in four stages. If we restrict 
g to be close to 1 then on each 3-simplex T in 2 we can replace g by g' 
where g' | Bd T— 1 and gf agrees with g except in a small neighborhood 
of Bd T. An Alexander-type isotopy on each T takes g' onto 1 moving 
no point far. The global isotopy has the effect of deforming g to a 
homeomorphism gi which is 1 except in a small neighborhood of the 
2-skeleton. Next using [6] gi is modified to get g{ which is the same 
as gi on cubes built over the 2-simplexes in 2 and is different from g\ 
only near the 1-skeleton of 2 . An isotopy is pieced together again 
which deforms gi to a homeomorphism g2 which is 1 except in a small 
neighborhood of the 1-skeleton. Two more reductions, near the 1-
skeleton and 0-skeleton respectively, which are described on disjoint 
cubes near the 1-simplexes and vertices respectively, take g2 onto the 
identity. 

COROLLARY 1. If M is a compact 3-manifold with boundary, then h 
is isotopic to 1 if and only if h = hkhk-x • • • h2hi where each hi is the 
identity outside a polyhedral 3-celL 

COROLLARY 2. If L is a tame compact 2-manifold in any 3-manifold 
M and e > 0, there is a S > 0 so that if h is any homeomorphism of L into 
M moving no point more than ô and if h(L) is tame, then there is an 
e-isotopy of M taking h{L) onto L pointwise and moving no point out­
side an ^-neighborhood of L. 

This makes use of and generalizes a result of Sanderson [ó]. 

COROLLARY 3. If M is a 3-manifold having triangulation S and € > 0 
there is a ô > 0 so that if h is a homeomorphism of the 2-skeleton Kof2 
into M moving no point more than S and such that h(K) is tame, then 
there is an e-isotopy of M taking h(K) onto K pointwise. 

QUESTION. In Corollary 3 can K be replaced by a 2-complex having 
no local separating points? 

The author has been informed that G. M. Fisher and M. E. Ham-
strom separately have obtained Theorem 2 for M a compact 3-mani­
fold with boundary and tha t the former also obtained Corollary 1. 
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