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The theorem proved in this note, when taken in conjunction with 
the theory of the Bohr compactification of a locally compact abelian 
group (for which see [ l ]) , provides density theorems for group char
acters which generalize the classical Kronecker and Kronecker-Weyl 
approximation theorems. The theorems thus obtained are in several 
respects extensions of those of Bundgaard [2]. An account of them 
will appear elsewhere. 

If G is a locally compact abelian group then a character of G will 
be taken here to mean a continuous homomorphism x of G into the 
circle group T. If G is discrete then its character group H=G* is 
compact and carries a unique Haar measure fx such that n(H) = 1. If 
(B is the class of Borel subsets of H then (iJ, (B, /x) is a probability 
field in the sense of Kolmogorov [3], and, for each gEG, the function 
X—*x{g) on H into T is a character of H, and is a fortiori a random 
variable for (iT, (B, JJL). 

If 07éSQG then [S] will denote the subgroup of G generated by 
5, except that, if S= (g), [S] will also be denoted by [g]. The symbols 
P, I J are used respectively for the restricted and unrestricted direct 
products. Thus if (GX)XGA is a family of discrete abelian groups then 
PXGA Gx is discrete, HXGA G* is compact, and each is the character 
group of the other for their natural pairing (see [4, §37]). 

THEOREM. Let S= (gx)x€A be a nonempty family of elements of G, let 
K\— {x(&)\x€zH} and let <j>s: H-*JJ\eA K\ be the homomorphism 

X -» (x(gx))x€A s 4>8(x). 

Then the following statements are equivalent: 

(0 [S] - P [gx]; 
XGÀ 

(ü) MH) = I [ KX; 
XGA 
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(iii) the f unctions x ^ x f e O , XGA, constitute an independent family of 
random variables f or the probability field (H, (B, JU). 

We prove the implications (i)—»(ii)—»(iii)--»(i). 
If (i) is true then H/[S]± = [S ]* = ÜXEA [&]*, where [ 5 ] x 

= { x G # | x t e ) = l for all gE[S]}. For each X G # we can therefore 
find a unique family (XX)XGA with XxG[gx]*, XGA, such that x(s) 
= IIXGA Xx(*x) for all s = HxeA *x£ [S], where $xG[gx] for X G A. 
Condition (ii) follows at once. 

Suppose next that (ii) is true. The group K= HXGA K\ is compact 
and therefore carries a Haar measure v for which v{K) = 1. The map 
<f>s: H—>K is an epimorphism and therefore fi(cj>sl(A)) ~v{A) for each 
Borel set AQK. Now let A0 = (Xi, X2, • • • , Xn)CA, where l^n< <*>, 
and let Ar be a Borel subset of K\r1 l^r^n, and for each XGA let 
v\ be the Haar measure on K\, normalized so that v\(K\) = 1. Suppose 
also that B\~Ar forX = Xr, l^r^n, and that ^x = ^x for X^A0 . Then, 
if Er= {x&H\x(g\r)&Ar} and E = n?«i-£n we have, since v is the 
product measure on K obtained from (̂ X)XGA, 

\ \ X G A / / XGA 

= n v*Mr) - n »{Er), 
so that (iii) is true. 

Suppose finally that (i) is false. Then we can find Ao = (Xi,X2, • • • ,Xn) 
CÀ, with l^n< 00, and integers kr, for l^r^n, such that TLr=i g\ 
= 1, with g x ^ l for r = l , 2, • • • , n. This means that the character 

f (9* 1) of X defined by/(co) = ü ? - i ^ , w = (COX)XGAG^, is identically 1 
on <l>s(H). But we can find coGi£ such that ƒ(co) 7̂  1, and then, by 
continuity of/, open sets ^4 r £^x r , l ^ f ^ w , such that/(co') ^ 1 when 
W 'G IIxeA B\, the 5x being defined as before. Evidently 0s'1( IIXGA ^X) 
— 0 and hence (again with the same notation) E = 0y ju(E)=0. On 
the other hand 

Ö KEr) = E nMr) * 0, 

and thus (iii) is false. Therefore statement (iii) implies (i), and the 
proof is complete. 

I am indebted to Professor S. Kakutani for drawing my attention 
to Pontrjagin's proof of Kronecker's theorem. The foregoing proof 
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that statement (i) implies (ii) is essentially a rearrangement of part 
of Pontrjagin's argument (for which see [4, §37]). 
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