
MEASURE ALGEBRAS ON ABELIAN GROUPS 

WALTER RUDIN1 

The recent developments in the general field of Fourier analysis 
which I wish to describe, illustrate the algebraic point of view which 
has established itself here as well as in most other parts of analysis, 
and which has been most fruitful in suggesting new and interesting 
problems. Typically, a question will pose itself in algebraic terms, 
will then be transformed into a problem which can be attacked by 
the methods of classical analysis, and the algebraic aspect will re­
appear in the solution. 

To cite just one example now, one may ask for the set of all auto­
morphisms of the group algebra of the circle group ; this turns out to 
be equivalent to the problem of finding all permutations of the set 
of all integers which carry Fourier series into Fourier series; the 
solution of this analytical problem involves arithmetic progressions, 
i.e., cosets of the subgroups of the additive group of the integers, and 
the group theoretic nature of the problem becomes apparent (the 
result is described in 3.3(d) below). 

This is a large subject, and I will restrict myself to those topics 
with which I have had close personal contact. This choice will, of 
course, result in the omission of much that is interesting. In par­
ticular, I will say nothing about what is perhaps the most intriguing 
of the open problems in Fourier analysis: the problem of spectral 
synthesis, or, equivalently, the problem of finding all closed ideals in 
LKG). 

I. Preliminaries. 1.1. Unless the contrary is explicitly stated, any 
group mentioned in the sequel will be abelian and locally compact, 
with addition as group operation. Associated with every such group 
G there is a measure m (not identically 0 or GO), the so-called Haar 
measure of G, with the following properties [6; 7; 21 ; 3 l ] : m is a 
non-negative completely additive set function defined for all Borel 
sets in G, which is regular (i.e., m(E) = sup m(K) =inf rn(V), where 
K ranges over all compact subsets of E and V ranges over all open 
supersets of £ ) , and which is translation invariant: 
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(1.1.1) m(E + x) =m(E) (* G G). 

These conditions characterize tn, up to a positive multiplicative con­
stant. When G is compact, it is customary to normalize m so that 
m{G) — 1 ; when G is discrete, any set consisting of a single point of G 
is assigned the measure 1. In any case, m{K) is finite if K is compact, 
m(V) is positive if V is open, and m(G) is finite if and only if G is 
compact. 

1.2. DEFINITION OF M(G). For any of the groups G under con­
sideration, M(G) is the set of all complex-valued completely additive 
Borel measures on G which are regular in the following sense: any 
measure ju with the above properties has a decomposition M=MI~"M2 

+i/z3--ijU4, with juy^O; it is required that each fij be regular in the 
sense in which this term was defined in 1.1. The requirement that 
JJL(E) be a complex number is meant to exclude the possibility that 
n(E) = oo. Thus the Haar measure of G belongs to M (G) if and only 
if G is compact. 

A norm is introduced in M(G) by defining 

(1.2.1) ||M|| = sup E | n(Ei) | (M G M(G))> 

the sup being taken over all finite collections of pairwise disjoint 
Borel sets Ei whose union is G ; it is easy to see, via the Hahn decom­
position theorem [7, p. 121 ], tha t ||ju|| < <*> for every ju£Af(G). 

We say tha t fi is concentrated on E if ix(A) = 0 whenever A and E 
are disjoint. If ix is concentrated on a countable set, then fx is dis­
crete; if /*(£)= 0 for every countable set E, then /x is continuous; if 
Ai(E)=0 whenever m(E)=0} where m is the Haar measure of G, 
then ix is absolutely continuous; finally, if ju is concentrated on a set 
E with m(E) = 0 , then p is singular. 

1.3. DEFINITION OF Ll{G). The set of all complex-valued functions 
on G which are integrable with respect to the Haar measure of G is 
denoted by Ll(G). Every fÇ:Ll(G) has associated with it an absolutely 
continuous measure fXfÇzM(G): 

(1.3.1) nf(E) = f fdm. 
JE 

Conversely, the Radon-Nikodym theorem [7, p. 128] shows that 
every absolutely continuous ix(E.M(G) is /*/ for some f^L1(G). If, as 
is customary, we identify any two functions in Ll(G) whose values 
differ only on a set of Haar measure zero, then the correspondence 
between ƒ and fXf is one-to-one, and we may therefore regard Ll(G) 
as a subset of M(G). I t is convenient to use ƒ and M interchangeably. 
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The restriction of the norm defined by (1.2.1) to Ll(G) coincides 
with the usual norm in spaces of integrable functions: 

(1-3.2) 11/11 = y | - f | / | dm (ƒ <E LKG)). 
J Q 

Note that Ll(G) = M(G) if and only if G is discrete. 
1.4. ALGEBRAIC OPERATIONS IN M(G). I t is obvious how M(G) can 

be made into a linear space: if ju, X£M(G), define 

(M + X)(E) = M(£) + X(£), 

M ( £ ) = C-M(JE), 

for every Borel set E in G and for every complex number c. With 
these operations, and with the norm (1.2.1), M{G) is in fact a Banach 
space, and Ll(G) is a closed subspace of M(G). 

Multiplication of two measures is defined by convolution: If 
lx, \ÇzM(G), let MXX denote their product measure [7] in the Car­
tesian product space G2, and associate with each Borel set £ in G the 
set 

(1.4.2) Ew = {(*, y) G G2 | * + ? € £ } . 

Put 

(1.4.3) ( M * X ) ( E ) = ( M X X ) ( E ( „ ) , 

and call the set function fx * X so defined the convolution of fx and X. 
I t is not hard to verify that fx * \Ç:M(G), that /JL * X=X * fx (since 

G is abelian), tha t convolution is associative, and that 

(1.4.4) ||M*X|| S y - | | X | | ; 

each of these verifications is an application of Fubini^ theorem. 
Thus, with convolution as multiplication, M(G) is a Banach alge­

bra. There is a unit element in M(G), namely the measure u such that 
u(E) = l if 0 £ J E and u(E)=0 otherwise; u is the unit mass con­
centrated at 0, and fx * u=fx for every /xGikf(G). 

The convolution of more than two measures can be defined by 
associativity; another (equivalent) definition, well adapted to some 
applications (see 2.3) is as follows: if jui, • • • , txnÇzM(G), associate 
with each EQG the set 

(1.4.5) EM = {(*i, • • • ,xn) €.Gn\xi+ • . • + xn<EE}, 

and put 

( 1 . 4 . 6 ) (Ml*M2* ' • • *Mn)(£) = (Ml X M2 X " ' X /!„)(£(«)), 
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where the measure on the right is the ordinary product measure. 
We also define 

(1.4.7) M1 = M, Mw = M * M"""1, M° = U. 

1.5. GROUP ALGEBRAS. By the Fubini theorem, (1.4.3) can be re­
written, for every Borel set E, in the form 

(1.5.1) ( /x*X)(£)= f »(E- x)d\(x). 
J o 

From this one immediately concludes the following: if fx is absolutely 
continuous, so is fx * X; if fx is continuous, so is fx * X; if both \x and X 
are discrete, so is ju * X. In other words, Ll(G) is a closed ideal in 
M(G), and so is the set of all continuous /xÇ:M(G) ; the discrete meas­
ures form a closed subalgebra of M(G). 

The algebra Ll(G) is usually called the group algebra of G, although 
this term should perhaps have been reserved for M(G). In the classi­
cal cases {G finite) LX(G) and M(G) coincide, and it is a matter of 
taste whether one wishes to consider the elements of a finite-dimen­
sional group algebra as functions on G or as measures on G. However, 
M(G) does have one advantage: its definition does not depend on the 
construction of Haar measure. 

1.6. In this connection it may be of interest to note that the 
absolutely continuous measures in M{G) can be characterized without 
any reference to Haar measure: 

THEOREM. A measure /JL in M(G) is absolutely continuous if and only 
if fx(E—x) is a continuous function of x, for every Borel set E in G. 

PROOF. Suppose fx=ixf for some fÇ:Ll(G)y and define fx, for #£(2 , 
by f*(y)=f(y-x). Then | | /* - / | | -*0 as x->0 [21, p. 118], and the 
continuity of JJL(E-X) follows from the relation fjLf(E-x) =fXfx(E). 

To prove the converse, suppose nt(E)—0, and let g be the char­
acteristic function of a Borel set A such that m (A) < <*>. Then 

(1.6.1) f/*(£ - x)dm(x) = (g*/i)(J2). 
J A 

Since gÇ:Ll(G) and since LX(G) is an ideal in M(G), the right member 
of (1.6.1) is 0. Hence JJL(E — X)=0 for almost all x; by continuity, 
fx(E) = 0 , and the theorem is proved. 

1.7. CHARACTERS, DUAL GROUPS, FOURIER TRANSFORMS, AND 

FOURIER-STIELTJES TRANSFORMS. A continuous character on a group 
G is a continuous complex function y on G, whose values will be de­
noted by (x, 7) , such that | (x> 7) | = 1 and 
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(1.7.1) (* + y,y) = (*,7)-(y,7) (x,yGG). 

The set of all such y forms a group T, the dual group of G, if addi­
tion is defined by 

(1.7.2) (x, 7i + 72) = (x, 71) • (x, 72) (a G G; 71, 72 G r ) ; 

T is usually given the compact-open topology: to every compact set 
K in G and to every e > 0 there corresponds a neighborhood of 0 
which consists of all y such that 

(1.7.3) | 1 - (*, 7 ) | < e (xEK). 

With this topology, T is a locally compact abelian group, and G is in 
turn the dual group of T (this is the celebrated Pontryagin duality 
theorem [3]). If G is compact then T is discrete, and vice versa. 

With every fÇ:Lx{G) is associated its Fourier transform jk: 

(1.7.4) j{y) = f ( - * , 7)/(*)A»(*) (7 G T); 

if /xGAf(G), its Fourier-Stieltjes transform (abbreviated to F. S. trans­
form in the sequel) is the function p defined analogously by 

(1.7.5) £(7) = f ( - * , y)dfx(x) (7 G r ) . 

I t is clear that (1.7.4) and (1.7.5) coincide for absolutely continuous 
JU: in the notation of 1.3, ƒ = pf. 

A concise presentation of the basic theorems about these trans­
forms may be found in [3]. The functions p, are uniformly continuous 
and bounded on T, the correspondence between fi and p, is one-to-one, 
and the mapping fx—^p is thus an isomorphism of the algebra M(G) 
onto an algebra of continuous functions on V : the mapping is clearly 
linear, and if v—p * X, then 

(1.7.6) *(7) =A(7)X(7) O y e r ) . 

It follows that the mapping fi—>p(y), for any fixed 7 G T , is a com­
plex homomorphism of M (G), and the fact that p determines \x implies 
that M(G) is a semi-simple Banach algebra [21, p. 76]. 

1.8. T H E GELFAND TRANSFORMS OF MEASURES. Being a commuta­
tive Banach algebra with unit, M(G) has a compact maximal ideal 
space A. We may consider A to be the set of all homomorphisms h of 
M(G) onto the complex field ; the topology of A is the weakest one in 
which the functions p defined on A by 

(1.8.1) A(A) = AGO 0» E Mi/S), h S A) 
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are continuous. We call # the Gelfand transform of fx. 
We saw in 1.7 that every Y £ F defines an element hy of A, by the 

formula 

(1.8.2) kyb) = £(Y) - f ( - * , y)d»(x) 0* G M(G)). 

We identify 7 and hy, and thus embed T in A; this embedding is a 
homeomorphism of T into A, and the Fourier-Stieltjes transforms on 
T are precisely the restrictions of the Gelfand transforms to T (so 
that the two ways in which the notation p, was introduced are compatible). 

1.9. T H E CIRCLE GROUP AND THE INTEGERS. T O cite just one 
familiar example, let G be the circle group C, i.e., the set of all com­
plex numbers of absolute value 1, with multiplication as group opera­
tion (or, equivalently, the set of all real numbers, with addition 
mod 27r). The dual group of C is / , the additive group of all integers; 
the characters are of the form 

(1.9.1) (ei$, n) = eine (ei$ G C, n G / ) , 

and the F. S. transform jX of any tiÇzM(C) is given by 

e~inddfx(d) (nGJ); 
0 

the numbers p,(n) are usually called the F. S. coefficients of JU. The 
Haar measure of C is the ordinary Lebesgue measure, divided by 2x. 

If G = J , then T = C, (n, ei6)=eine, M(J)=V(J), and if M G M ( J ) , 

then 

(1.9.3) j&(ê ) = L ( W ) ^ . 

In other words, the F. S. transforms on C are precisely those func­
tions which are sums of absolutely convergent trigonometric series. 

II . The maximal ideal space of M(G). 2.1. We saw in 1.8 that T is 
a subset of A, the maximal ideal space of M(G). In one important 
case, T = A : this happens when G is discrete, for then Af(G)=L1(G), 
and it is known [21, p. 136] that V is always the maximal ideal space 
of Ll(G). If G is not discrete, however, then V is not compact, and 
hence T is a proper subset of A. The question arises whether one can 
say anything more specific about the relation between T and A. 

2.2. In 19S0, Sreider [30] discovered a surprising fact: if G is the 
additive group of the real line, then T is not dense in A, and M(G) 
is not symmetric (i.e., the set of all Gelfand transforms is not closed 
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under complex conjugation). This was all the more surprising since 
the F. S. transforms are always closed under conjugation: if a(E) 
= #(— E) , then £(7) is the complex conjugate of #(7), for all Y £ I \ 

Hewitt [ l3] extended this result to groups G in which every neigh­
borhood of 0 contains an element of infinite order; the essential part 
of his proof was simplified in [25]. Recently Williamson [37] has 
succeeded in proving the same thing for every nondiscrete G. I will 
sketch a proof of this interesting result, using the method of [25] to 
prove the lemma: 

2.3. LEMMA. On every nondiscrete locally compact abelian group G 
there is a non-negative continuous measure jit £Af(G), such that fx(E) 
= ju(~E) , ||/x|| = 1, and 

(2.3.1) 
«_0 

= 2 , \Oi\ 
»-0 

for every choice of complex numbers a0, • • • , an. 

(The measures /** are defined by (1.4.7).) 
PROOF. One of two cases must occur [25]: either every neighbor­

hood of 0 in G contains an element of infinite order, or G contains 
a compact open subgroup of bounded order. In the former case, put 
W(G) = 00. In the latter case, there is a compact open group K in G 
and there is an integer PF(G)^2, such that (i) the order of no ele­
ment of K exceeds W(G), (ii) every neighborhood of 0 in G contains 
an element of order W(G). With this notation, the following proposi­
tion holds: 

There exists a set Q in G, homeomorphic to the Cantor set, with the 
following property: if g\, • • • , gp are distinct points of Q, if'ni, • • • , np 

are integers, not all 0, such that \ n\ < W(G), then 

(2.3.2) mgi+ • • • + npgp^0. 

For W{G) = 00, this was proved in [25]. In the other cases the 
proof is quite analogous; Q is constructed as a subset of K, by a 
suitable imitation of the usual construction of a Cantor set on the 
line as the intersection of sets En which are unions of 2n intervals. 

Having Q, we put P = QVJ( — Q), and take for JJ, any continuous 
non-negative measure which is concentrated on P , such that \\/j\\ = 1 
and fx(E) =M(~"E) ; since P = —P, this can be done. Since jun is con­
centrated on P n , where P i = P and P n + i = P n + P , it is enough to 
show that m<n implies 

(2.3.3) M»(Pm) = 0. 
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Fix m<n, and let 5 be the set of all (xi, • • • , xn)(EGn such that 

(2.3.4) * i € P , • • • , * • G P ; * ! + • • • + 

Define fX(n) by: jtf(i)=/i, M(w)=MXM(n-i)» so that jU(n> is a measure on 
Gn. Since t̂ is concentrated on P , (1.4.6) shows that 

(2.3.5) lX«(Pm) =M(n)(5). 

Suppose (xi, • • • , ff„)GS. By (2.3.4) there are points yi, • • • , ym 

G P , such that 

(2.3.6) xi + • • • + ffn = yi + • • • + yro. 

The definition of P shows that ff» = e,-g,-, with €»-=±l, g;G(?. If 
gi^gj whenever i?*j, the fact that m<n leads to a relation which 
contradicts (2.3.2). Hence Xi±Xj = 0 for some i^j. Since ju is con­
tinuous, the set of all points in G(n) at which any of the relations 
Xi±Xj = 0 holds, has measure 0 with respect to jU(n>. It follows that 
Moo (5) = 0 , and the lemma is proved. 

2.4. THEOREM [37]. Suppose G is a locally compact, abelian, non-
discrete group. Then 

(a) M(G) is not symmetric] 
(b) the closure of Y in à. does not contain the Silov boundary of A ; 
(c) the Wiener-Pitt phenomenon occurs. 

For the definition of Silov boundary we refer to [21, p. 80]. By 
(c) we mean that there exists a F. S. transform on V whose reciprocal 
is bounded but is not a F. S. transform; on the real line such an 
example was constructed in [36]. We note that each of the three 
assertions of the theorem implies that V is not dense in A. 

PROOF. Take /z as in Lemma 2.3, and put a = u—iJ,%, where u is the 
unit of M(G). By (2.3.1), 

I I
 w, / f t \ Il n /n\ 

E( J(-DvH = E( J = 2» (*« 1,2,3,...), 
I o \k/ II o \k/ 

so that the spectral norm of <r, lim ||<7M||1/w, is 2 [21, p. 75]. Thus there 
is an &GA such that |&(°0| = 2 . Since ||JU|| = 1, we have |&(M2) | =1» 
and the equation | l—h(fx2) | = 2 implies that A(M2) = — 1 and h(<r) = 2. 

Since fi( — E)=n(E) and M is real, fi(y) is real on V. However, 
(i(h) = h(n) = ±i. If the complex conjugate of £ were the Gelfand 
transform of some v(EM(G), then jCt — P would vanish at every point 
of T, so that fx = v. But fi(h) 7^P(h). This contradiction proves (a). 

Since 0 ^ J & 2 ( T ) ^ 1 on I \ and £ = l-jfc2, we have 0 ^ £ ( 7 ) ^ 1 on V; 
since &(h) = 2 , \&\ does not attain its maximum over A at any point 
of the closure of I \ and (b) follows. 
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To prove (c), put T — U+JJL2. Then l ^ r ( y ) ^ 2 on T, but r(h) 
= 1+Â(A*2) = 0 , so that r - 1 does not exist in M(G). 

This completes Theorem 2.4. 
2.5. There is not much known about the topological properties of 

A (Sreider's description of the points of A by means of "generalized 
characters" [30] seems to throw little light on the problem), but 
here are a few observations (it is assumed throughout that G is not 
discrete). 

(a) The Gelfand transforms of the absolutely continuous measures in 
M(G) vanish outside F. 

If h does not annihilate every ƒ £ L1 (G), then there is a y G T such 
that h(J) = / ( Y ) for all fEL^G), andf0(y) = 1 for some foGL^G). For 
any /x£ Af(G), the measure a=fx * / 0 is absolutely continuous, and so 
h(fl)=h(ii)h(fo)=h(<r):=&(y)=p,(y). In other words, ht-T. 

(b) COROLLARY. T is an open subset of A. 

(c) Although T is not dense in A, A is "closely attached" to Y in 
the following sense: 

A is not the union of two nonempty open-closed sets, one of which con­
tains r . 

If it were, a well-known theorem of Silov [29] would imply the 
existence of some jitGikf(G) such that fi(y) = 0 on T, but fl(h) = 1 on 
some nonempty subset of A—T, which is impossible. 

(d) COROLLARY. If F is connected, so is A. 

(e) There are singular measures in M(C) whose Gelfand transforms 
vanish outside J. I.e., the converse of (a) is not true. (See 1.9 for nota­
tion.) 

Indeed, Salem [28, Theorem I I I ] has shown that there are singu­
lar measures ixÇ~M(C) whose F. S. coefficients are 0{\ n\~a) for some 
a > 0 ; hence jufc£L2 for some positive integer k, and (a) implies that 
[*(M) ? = KM*0 = 0 outside / . 

(f) There is a singular measure fxÇzM(C) such that jl(n)—^0 as 
I n\ —»oo , but such that {1(h) F^O for some hÇzA — J. (Here A is of course 
the maximal ideal space of M(C).) 

It is known that there is a perfect set P on C which is not a basis 
and which carries a positive continuous measure JJL whose F. S. coeffi­
cients tend to 0 as | n\ —>oo [30, p. 25; 28, Theorem IV]. Let F be 
the regular family of sets (in the sense of Raikov [30, p. 15; 5, pp. 
184-187]) generated by P , let o> be the projection of cr on F, and 
define h(a) =<rF(Q. Then hQJ, but h(ji)>0. 

2.6. The following problems might be of interest: 
(a) What is the Silov boundary of A? Is it all of A? 



236 WALTER RUDIN [July 

(b) Is there any subset S of A, larger than the closure of I \ on 
which the restrictions of the Gelfand transforms are closed under 
conjugation? 

(c) Let R(G) be the algebra of all self-adjoint elements of M(G). 
That is, IJ,ÇZR(G) if and only if there is a cr£.M"(G) whose Gelfand 
transform is the complex conjugate of the Gelfand transform of ju. 
R(G) contains all ix such that j& = 0 outside T (or outside any set 5 
with the properties (&)); R(G) also contains all discrete measures on 
G. Is there any intrinsic description of those measures which belong 
to 22(G)? 

III. Isomorphisms of group algebras. 3.1. Consider two locally 
compact abelian groups, Gi and G2, with dual groups I \ and T2, and 
suppose that r is an isomorphism of G2 onto G\ (an isomorphism of 
two topological groups is of course also required to be a homeomor-
phism). Associated with r there is an isomorphism # of T2 onto Ti, 
defined by 

(3.1.1) (*, 0(7)) = (r-1 (*), 7) (* G Gu 7 G T2), 

and there is a positive constant k such that 

(3.1.2) mi(rE) = k-tn2(E), 

where nti denotes the Haar measure of d (this depends on the unique­
ness theorem for Haar measure). 

Fix some 7 o £ r 2 , and let T be the mapping of M(Gi) into M(G2) 
defined by 

(3.1.3) (I'M)(E) = f (r-Hy), 7.)<fo(y) 0» G M(Pd)• 

If we substitute an absolutely continuous ju into (3.1.3), so that 
dfx(x) =f(x)dnti(x) for some ƒGL^Gi) , a simple computation shows 
that T carries Ll(Gi) into Ll{G2), and that 

(3.1.4) (zy)(«) = *•(*, TO) - / (T (* ) ) (* G ft, ƒ G W i ) ) . 

The Fourier transforms of (3.1.3) and (3.1.4) are easily seen to be 

ti 1 e\ ((Tti*(v) = A(*(7) - *(7o)), 

Since 0 is an isomorphism onto I \ , (3.1.5) shows that T is an iso­
morphism of M(Gi) onto M(G2) whose restriction to L(Gi) is an iso­
morphism onto Ll(G2) ; this follows from the obvious linearity of T9 

combined with the identity 



1959] MEASURE ALGEBRAS ON ABELIAN GROUPS 237 

(3.1.6) (27* * TX) = TQ* * X) 0*, X G Jf (GO), 

which is an immediate consequence of (3.1.5). Moreover, T is an 
isometry: 

(3.1.7) INIHMI (jteM(G0). 
This is a consequence of (3.1.3). 

Conversely, if <f> is any isomorphism of T2 onto I \ , then (3.1.S) 
induces an isomorphism T between the algebras M(G%) and also be­
tween the algebras Ll{G%) ; <f> determines r via (3.1.1), and T satisfies 
(3.1.3), (3.1.4), and (3.1.7). 

The following questions now arise quite naturally: Are there any 
other isomorphisms between these group algebras? Can noniso-
morphic groups have isomorphic group algebras? If the answer is 
affirmative (a simple example of this sort, in which the groups are 
finite, was given by Wendel [32]), to what extent does the structure 
of Ll(G) or of M(G) determine the structure of G? 

3.2. Suppose, then, that T is an isomorphism of LX{G\) onto 
LX(G2). Since I\- is the maximal ideal space of Ll{Gt), T induces a 
homeomorphism a of T2 onto Ti, such that 

(3.2.1) ( 2 y r ( 7 ) = }(a(y)) (ƒ G L\G,), 7 G T2). 

Helson has shown that T can be extended to an isomorphism of 
M(Gi) onto M(G<L) [8]; his proof depends on the following character­
ization of the F. S. transforms: a function g on I \ is a F. S. transform 
if and only if the mapping ƒ--»£ •/ carries every Fourier transform to a 
Fourier transform. The action of T on M(Gi) is described by 

(3.2.2) ( 2 > r ( Y ) = A(«(7)) 0* G M(GÙ, T G T2). 

Put iJLx— TeXf where, for every # £ G i , ex is the measure of mass 1 
concentrated at the point x. Since ex * ey = ex+y, we also have 

(3.2.3) ixx+v = fix * Hy (x, y G Gi), 

and since T is an isomorphism between two semi-simple Banach 
algebras, T is bounded [21, p. 76]. We conclude that T induces a 
bounded homomorphism X—*JJ,X of G\ into M(G%). 

In terms of a, the conclusion is (by (3.2.2)) 

(3.2.4) My) = ( - * , a(y)) (x G G 1 ) 7 G T2). 

3.3. The following information has so far been obtained by determin­
ing all bounded homomorphisms x—>IJLX or, equivalently, by investi­
gating for which homeomorphisms a the functions (—x, a(y)) are 
F. S. transforms of uniformly bounded measures fix: 
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(a) If T\ (hence also T2) is connected, then a is an isomorphism of 
T2 onto Ti, followed by a translation ofTi [l ]. 

The simple isomorphisms discussed in 3.1 are thus the only ones in 
this situation, and we can state a corollary: 

If L(G\) and L(G2) are isomorphic, and if Ti is connected, then Gi 
and G2 are isomorphic. 

The crucial step in the proof of (a) is the analysis of (3.2.4) if 
T2 is the real line [l ] : 

(b) Let ƒ be a function on the real line, and suppose there are measures 
ixn on the line, with {||MW||} bounded and p,n=fn, for n = 0, ± 1 , ± 2 , • • •. 
Then there exist real numbers a and b such that 

(3.3.1) f(t) = e^+v ( -oo < t < oo). 

Note that the mapping t—>at+b (with a 9*0) is an automorphism 
of the line, followed by a translation. 

(c) If || Tf\\ ^ 11/11 for allfGL^Gi), then T is of the form (3.1.4). 
This is proved in [8] ; Wendel [33 ] has obtained this result even for 

noncommutative locally compact groups. 

COROLLARY. If there is an isometric isomorphism between Ll(G{) 
and L1(G2), then Gi and G2 are isomorphic. 

(d) An analysis of (3.2.3) in the case G\ = G2 = C (the circle group) 
has led to the following result [23] (J again denotes the integer 
group) : 

A one-to-one mapping a of J onto J induces an automorphism of 
Ll(C) (and of M(C)) if and only if there is a mapping /3 of J onto J 
which differs from a in only a finite number of places, such that 

(3.3.2) 0(n + g) + j8(» - g) = 2p(n) 

for some g>0 and all nÇ.J. 
In other words, the series ]C~«> c(a(n))eind is a Fourier series when­

ever ]C-°o c(n)ein6 is a Fourier series, if and only if a is of the above 
form (and similarly for F. S. series). The endomorphisms of Ll(C) 
are also determined in [23]. 

The mappings j(3 which satisfy (3.3.2) can be described in a different 
way: suppose 

(3.3.3) J = i i U • • • \J Ak = J5iU . . - U B * , 

where each Ai and each Bi is an infinite arithmetic progression, and 
, 4 / \ 4 / = 5/\B,-==0 if iyéj. Let /3 map Ai linearly onto Bi in any 
way whatsoever (the action of ]8 on A *• is independent of its action on 
Aj). Then ]3 satisfies (3.3.2), and every ]8 satisfying (3.3.2) is obtained 
in this way. 
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(e) A slight modification of the work in [23 ] establishes the follow­
ing [26]: 

LX(G) and Ll(C) are isomorphic if and only if G is a direct sum 
C+F, where F is a finite abelian group. 

If G = C+F, the isomorphisms of Ll(G) onto Ll(C) are again in­
duced by mappings ce of J onto T which are of the form described 
i n ( d ) . 

3.4. Let T now be an isomorphism of M(Gi) onto M(G<L) ; since A»-
is the maximal ideal space of M{Gi), T induces a homeomorphism a 
of A2 onto Ai, such that 

(3.4.1) ( Z W ~ ( T ) = A(«(T)) (M G M(GX), 7 G A2). 

We saw in 3.2 that every isomorphism of Ll{G\) onto LX(G2) ex­
tends to M(Gi). Is it true, conversely, that the restriction of T to 
Ll{G\) maps Ll{G\) onto L 1 ^ ) ? (Or, is it true that every automor­
phism of M(G) preserves L^G)?) For this it is clearly necessary that 
the a defined by (3.4.1) should map T2 onto IY But this necessary con-
dition is also sufficient: 

Let Mc(Gi) be the set of all /x£ikf(G») such that jut vanishes outside 
some compact subset of I \ . If ixÇzMc{G%), then j&£Z,2(I\). I t follows 
that Mc(G%)CLl(Gi)\ moreover, Me(Gi) is dense in L1(Gl). Thus T 
maps Mc(Gi) onto MC(G2) if a( r 2 ) =Ti , and this implies that T maps 
LHGi) on toLKGy. 

We next observe that if a is given by (3.4.1), then a(F2) =Tri. (T 
denotes the closure of T in A.) This follows from the fact that T\- is the 
unique closed subset E of A* which is minimal with respect to the 
following property: if <r£ Af(G»-) and if o- = 0 at every point of E, then 
(7 = 0. 

If we now assume that Fi satisfies the first axiom of countability, 
we can prove that ce(F2) =F i (this is undoubtedly true without any 
countability restriction, but I have no proof that covers the general 
case) : Since a( r 2 ) =F i , there is a dense open subset V of T2 such that 
ce(F)Cri , and for any 7 o £ r 2 there is a simple countable sequence 
{jn}, with ynEV, such that 7rr->7o. By (3.4.1), 

(3.4.2) A(«(7»)) -> A(«(TO)) (M E M(G1)). 

In particular, if n = ex (see 3.2), then 

(3.4.3) ( - x, a(yn)) -> ( - », «(70)) (a G Gi). 

If {«(7n)} lies in a compact subset of Ti, then ot(yo)ÇzTi. If not, 
there is a subsequence, again denoted by {«(7^)}, which tends to 
infinity in IY Integrating (3.4.3) over some set A of positive finite 
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Haar measure, and applying the Riemann-Lebesgue theorem, we ob­
tain 

(3.4.4) I ( — x9a(yn))dmi(x)-+0 (»—>°°); 
J A 

by the Lebesgue convergence theorem (and this is where a simple 
countable sequence is needed), (3.4.3) implies 

(3.4.5) f ( - * , a(yo))dm!(x) = 0. 
J A 

Since A was arbitrary, ( — x, a(yo)) = 0 for almost all x, contradicting 
(3.4.3). 

Thus a(70) GTi. I t follows that a( r 2 ) C r i . Since the same argument 
applies to or1, the following theorem is proved: 

3.5. THEOREM. If T is an isomorphism of M{G\) onto M(G2) and if 
Ti satisfies the first axiom of countability, then T maps i1(6 :i) onto 
Li(G2). 

The structure theorem for locally compact abelian groups [31, 
p. HO] shows that the countability assumption imposed on I \ is 
equivalent to the following condition on G\\ There is an open-closed 
subgroup Go of Gi which is the direct sum of a Euclidean space and a 
compact group, and which has only a countable number of cosets in 
Gi. In other words, the Haar measure of Gi is cr-finite. 

3.6. In 3.2, a condition was found (namely (3.2.4)) which is neces­
sary for the homeomorphism a to induce an isomorphism of Ll(Gi) 
onto Ll(G2), via (3.2.1). But this condition is also sufficient, as shown 
by the following theorem, in conjunction with §3.4: 

THEOREM. Let a be a mapping {not assumed to be continuous) of 1\ 
into I \ , with the following property: for each x £ G i there is a M*G-M*(G2) 

such that 

(3.6.1) My) = (-*, «(T)) (x e Gx, 7 G r2), 

and H/ijl =£-4 < °°, where A is independent of x. Then for every 
o-G-M(Gi), the f unction f defined by 

(3.6.2) f(y) = &(a(y)) = f ( - * , a(y))da(x) (7 G T2) 

is a Fourier-Stieltfes transform on T2. 

PROOF. Choose 71, • • • , 7pGT2 and choose complex numbers 
ai, • • • , aP. Then 
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w n 

= I X) 0nA»(7n)Ar(*) 

= 1 ^ 1 JL*n(--y,yn)dix9(y)>dcr(x), 

so that 

(3.6.3) X) 0n/(7n) • 4̂ • sup X ^OS 7n) (y e GO. 

Since this holds for arbitrary 71, • • • , yp and ai, • • • , ap, ƒ is a F . S. 
transform, by a theorem of Eberlein [4], whose original form is due to 
Bochner [2]. 

IV. Idempotent measures. 4.1. The discussion of isomorphisms of 
group algebras has led us to the problem of determining the bounded 
homomorphisms of Gi into M(G2), given by 

(4.1.1) Vx+y ~ f*x * l*y ( * , y € G i ) . 

A special case of this problem deserves attention: if x = y = 0, (4.1.1) 
becomes 

(4.1.2) M = M' 

That is to say, we are led to the problem of finding all idempotents 
in M(G) ; clearly, we cannot hope to solve (4.1.1) unless we can solve 
(4.1.2). 

(a) This problem has two other aspects which make it interesting: 
There is a one-to-one correspondence between the set of all bounded 
projections P of Ll(G) which commute with translations, and the 
set of all idempotent /xGA^(G), given by 

(4.1.3) P / = ƒ*/*. 

(b) One of the basic problems of Fourier analysis is that of deter­
mining just which functions on Y are F . S. transforms. If we know 
all idempotents in M(G), then we know all simple functions (i.e., 
those with only a finite set of values) which are F. S. transforms on I \ 

4.2. If /xGM(G) and M=M 2 , then j& = £2, so that fl(y) = 0 or 1 for all 
Y G T . Let 5(/x) be the set of all Y £ T at which #(7) = 1. The problem 
of finding all idempotents in M(G) is thus equivalent to that of find-
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ing all subsets of T whose characteristic functions are F. S. trans­
forms. 

The continuity of jx implies that S(fx) must be open-closed. A par­
ticular case of the problem can therefore be solved immediately: if 
r is connected, then M{G) has no nontrivial idempotents (there are 
always two trivial ones: JLC = 0 and fx — u, the unit of M(G)). 

It is interesting that the problem reduces to the consideration of 
compact G: 

4.3. THEOREM [27]. If \x £ M(G) and if M—M2> then fx is concentrated 
on a compact subgroup K of G {and hence fx may be regarded as an ele­
ment of M {K)). 

4.4. We may thus suppose that G is compact. If A is a subgroup 
of T and H is the subgroup of G which consists of all x such that 
(x, y) = 1 for all 7 £ A , then m H (the Haar measure of H) is an idem-
potent element of M(G), and A = S(ra#). If we define fx by 

(4.4.1) d/x(x) — (x, y)dimi(x) 

for some Y £ I \ then JU=JU2, and S(fx) = A + 7 . Thus every coset of A is 
S(ix) for some idempotent fx. 

Let R(T) be the smallest family of subsets of V which contains all 
cosets of all subgroups of I \ and which is closed under complementa­
tion and finite intersection. We call R(T) the coset ring of T. 

Since 5(/>t)P\5(X) =<S(/x * X) and S(u—fx) is the complement of 
5(/x), the above remark implies that every set in R(T) is S(/JL) for some 
idempotent jx&M(G). The converse is probably true too: 

4.5. CONJECTURE. A set EC.T is S(fx) for some idempotent fxÇzM(G) 
if and only if E belongs to R(T). 

4.6. If G = C , this conjecture is true, as was proved by Helson 
[9; IO] (his result preceded and suggested the conjecture) and I have 
recently extended it to all finite-dimensional torus groups [27], using 
the decomposition into irreducible measures described in 4.7, as well 
as some work on multiple Fourier series which was done by Helson 
and Lowdenslager [12]. 

4.7. I call an idempotent ixÇîM(G) irreducible if the smallest com­
pact subgroup H of G on which fx is concentrated has the following 
property: if K is a compact subgroup of H and if m(K) = 0 , where m 
is the Haar measure of H, then jx(E) = 0 for all subsets E of K. 

The above-mentioned decomposition theorem states: if fxÇzM(G) 
and M—M2» then there are integers ai, • • • , an and irreducible idem­
potents Mi> ' ' * > Mn iw M(G), such that fx = aifxi+ • • • +anfxn. 

In order to prove the conjecture in its full generality, one has there-



!959l MEASURE ALGEBRAS ON ABELIAN GROUPS 243 

fore to show that every irreducible idempotent measure /x is ab­
solutely continuous with respect to the Haar measure of the smallest 
compact group on which JU is concentrated. 

4.8. One other special case should be mentioned: If juGAf(G0> 
ju=ju2, and ||/A|| = 1 , then it is easily seen that S(fi) is a coset of a sub­
group of T. In particular, if JU = JU2 and JU = 0, then fx is the Haar meas­
ure of a compact subgroup of G; this last statement is true even on 
noncommutative compact groups [34]. 

V. Transformations of Fourier-Stieltjes transforms. 5.1. If # is a 
family of functions, defined on some set 5, there are two kinds of 
transformations of SF that are often of interest: the domain trans­
formations and the range transformations of 5\ 

A domain transformation of CF is a mapping a of S into 5, such that 
ƒ o a G £ whenever ƒ G SF ; here ƒ o ce is the function defined by (ƒ o a) (x) 
=ƒ(«(#)), for x G S . In Chapter I I I , domain transformations of 
Fourier transforms and of F. S. transforms were discussed. If $ is a 
linear space, domain transformations of $ are linear operations on SF. 

A function <£>, defined on a set E in the complex plane, may be 
called a range transformation of ^ if «Êo/G^F for every fÇzïï whose 
range lies in E. For brevity, we shall use the phrase "<£ operates in 3" 
to describe this situation. For example, if ^ is an algebra (with point-
wise multiplication) and if <&(*;) is a polynomial in z, then <3? operates 
in ^ (no matter what E is). 

We shall be concerned with the problem of determining those <£ 
which operate in algebras of Fourier transforms and of F. S. trans­
forms. 

5.2. DEFINITION OF A, F, AND FS. We let A denote the set of all 
functions on C which are sums of absolutely convergent trigonometric 
series; F is the set of all sequences of Fourier coefficients (i.e., F is the 
set of Fourier transforms of the functions in L 1 ( Q ) ; and FS is the 
set of all sequences of F. S. coefficients (i.e., the set of F. S. trans­
forms of measures in M(C)). 

5.3. The earliest theorem in this circle of ideas is due to Wiener 
and Levy [35; 20]: If /G-4 and if $ is analytic on the range of/, 
then $ o/G^4. 

It is natural to ask whether this sufficient condition of analyticity 
can be weakened, but the search for strong necessary conditions has 
been successful only quite recently. 

Let us assume that $ is defined on the closed interval 1 = [ — 1, l ] . 
In 1954, Kahane [14; 15] proved that $ does not operate in A if 
<£(#) = \x\, and more or less simultaneously I proved the same for 
$(x) = ( l + x ) 1 / 2 , and for some similar functions [22]. In 1956, I 
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proved that if <& operates in Fy then $ must satisfy a Lipschitz condi­
tion of order 1 in some neighborhood of the origin; if $ operates in 
FS, then the Lipschitz condition holds uniformly on I [24]. Kahane 
[16] countered by proving that this necessary condition was not 
sufficient: he showed that * does not operate in F if <ï>(x) = | x\. 

Last spring a bigger step was made: Kahane [l7] constructed 
infinitely differentiable functions which do not operate in A. But the 
final results were only obtained within the last month : 

5.4. THEOREM. Suppose <i> is a complex f unction defined on the inter-
vall=[-l, 1]. 

(a) $ operates in A if and only if <£ is analytic at every point of I 
[19]. 

(b) $ operates in F if and only if <ï> is analytic in some neighborhood 
of the origin [ l l ] . 

(c) 3> operates in FS if and only if $ can be extended to an entire 
function in the complex plane [18]. 

5.5. If $ is defined in the whole plane (or in a region), analogous 
conclusions are obtained, with "real-analytic" in place of "analytic." 
But 5.4(c) also has the following corollary [18]. 

Suppose <î> is defined in the whole complex plane. Then <ï> operates in 
the algebra of the Gelfand transforms of the measures in M(C) if and 
only if <S> is an entire function of a complex variable. 

This is a much stronger result than Theorem 2.4(a), where the 
function $(z)=z is ruled out. However, it should be recorded that 
Theorem 2.4(a) led to the conjecture that 5.4(c) might be true. 

5.6. I would like to end with a brief sketch of the proof of Theorem 
5.4(c). For fxÇzM(C)j let * O J U denote the measure a such that 
â(n) =$(fi(n)) for w = 0, ± 1, ± 2 , • • • . One first proves that to each 
r>0 there is an M(r) < °o such that | |$ o ju|| rgM(r) whenever ||JU|| £r 
and jLt(w)G^, and one defines 

00 

(5.6.1) V(x) = $(R sin x) = 2 c*einx (~ °° < x < °°) 
—00 

for some R satisfying 0 <R < 1. Then for every real number a, 

(5.6.2) | | * o G* + a)|| £ M(Rer) - M 

whenever \\fj\\ ^r and fi is real on J. Since, formally, 

00 

(5.6.3) * o (M + a) = X) cne
in*eina, 

it is reasonable to expect that 
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II 1 rv || 
(5.6.4) ||cneHI = — I ^ ° 0* + d)e"inada\\ ^ M 

\\2wJ-x II 
(f» = 0, ± 1 , ± 2 , • . . ) , 

if ||M|| ^r and j& is real on J". This is not hard to prove, and if we take 
ix as in Lemma 2.3, we can conlude that 

(5.6.5) | cn\ * ln | r £M (n = 0, ± 1 , ± 2 , • • • ). 

Consequently the Fourier series in (5.6.1) converges to an analytic 
function in the strip \y\ < r . This is true for all r, so that St" is an en­
tire function. 

Let us do this for two different values of Rt say Ri and i?2, and call 
the corresponding entire functions ^ i and ^2. We then have, in some 
neighborhood of the origin, 

(5.6.6) <£(#) = ^1 ( arc sin — 1 = ^2 ( arc sin — 1. 

The first representation of $ shows that Ri, — Ri, and 00 are the only 
possible singular points of <£; the second representation shows that 
R2, —i?2, and 00 are the only possibilities. Since Ri5*R2} $ can be ex­
tended to an entire function. 

Postscript (added February 4, 1959). Since this address was de­
livered, the following new developments have occurred in the subject 
under consideration: 

(1) P. J. Cohen has characterized all idempotents in M(G)\ the 
conjecture 4.5 is correct. 

(2) Using this result, he has also characterized all homomorphisms 
of Ll(G\) into if(G2). A summary of this work will appear shortly as a 
Research Announcement in this Bulletin. 

(3) One can deduce from Cohen's work that Theorem 3.5 is true 
without any countability restriction on I \ . 

(4) Theorem 5.4 has been extended to locally compact abelian 
groups in general. Three cases have to be distinguished (we assume 
<J>(0) = 0 , * is defined on / , and we let ^4(r), B(F) denote the algebras 
of all Fourier transforms and F. S. transforms, respectively, on Y) : 

(a) If T is not discrete, $ operates in -4(r) if and only if $ is 
analytic on I . 

(b) If T is discrete, $ operates in ^l(r) if and only if <& is analytic 
in some neighborhood of the origin. 

(c) If T is not compact, <l> operates in B( r ) if and only if <£ can be 
extended to an entire function in the complex plane. 
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Proofs of these results are being published jointly by the authors of 
[11; 18; 19]. 
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