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Let x denote a generic point of euclidean N-space R¥(IN=2). We
consider the space § of all summable functions f(x) such that the
gradient grad f (in the distribution theory sense) is a totally finite
measure. I(f) denotes the total variation of the vector measure grad f.
In case grad fis a function F we have

10 = [ 17| as

We write H}, for Hausdorff k-measure; and fr E for the frontier of a
set E. Fr E is rectifiable if it is the Lipschitzian image of a compact
subset of R¥-1,

One ought to be able to determine the primitive f with greater pre-
cision than grad f, at least in certain cases. Our main result is that in-
deed f can be determined up to Hy_j-measure 0 in two (quite op-
posed) cases: (1) grad f is a function; (2) the range of f is adiscrete
set, which we may take to be the integers. More precisely, let &, F»
be the sets of those fEF satisfying (1) and (2) respectively. Let Fo
be the set of all Lipschitzian functions f with compact support. Let
F o2 be the set of all functions f with the following property: there exist
a closed oriented (V—1)-polyhedron 4 and a Lipschitzian mapping
g(w) from A into R¥ such that, for every x&g(4), f(x) is the degree
of the mapping g at x, and f(x) =0 for xEg(4). Write J(w) for the
Jacobian vector of g(w), wherever it exists. Let Q denote the set of
points x&g(A4) at which there is a nonunique tangent; more pre-
cisely, we say that x€Q if there exist w, w'&A4 such that: (1) g is
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totally differentiable at w and w’; (2) g(w) =g(w') =x; (3) J(w)=0,
J(w')#£0; and (4) J(w) and J(w') do not point in the same direction.

DEerFINITION. A function fESF; is precise if there is a sequence
fnETFo; I-convergent to f such that lim, f.(x) =f(x) pointwise except
in Hy_;-measure 0.

THEOREM 1. For i=1 or 2 every function fESF; is Hy-almost every-
where equal to a precise function f'. For i=1 f" is uniquely determined
up to Hy_y-measure 0. For 1=2 f' is unique up to Hy_s-measure 0 if
we impose the additional restriction that f, is obtained from a mapping
2n as above for which lim, Hy_1(Q.) =0.

The idea of precise function is closely related to Aronszajn’s notion
of perfect functional completion. In fact:

THEOREM 2. The class of exceptional sets for the perfect functional
I-completion [1] of the space Fo, is the class of all Hy_s-null sets in R¥.

Fuglede [6] recently treated the analogous situation when
grad f&L», p>1. The exceptional sets turn out to be those sets E on
which the Riesz potential of appropriate order of some non-negative
function in L? can be 4 «. Every set of Hausdorff dimension <N —»,
and none of Hausdorff dimension > N —p, is exceptional. For p=2,
considered previously by Deny and Lions [3], and Aronszajn and
Smith [1], the exceptional sets are those of classical outer capacity
0 of order 2.

A set E has finite perimeter if its characteristic function belongs to
F, (see De Giorgi [2];in [5] I called E Caccioppoli set).

THEOREM 3. Let E have finite perimeter. Then there is a sequence of
open sets E, and a set E' coincident with E except in a Hy-null set such
that: (1) fr E, is rectifiable for every n; and (2) the characteristic func-
tion of E. converges to the characteristic function of E’ in the I-norm
and also pointwise except in Hy_y-measure 0. E’ is uniquely determined
up to Hy_i-measure 0 if we require in addition that

lim HN..l[x € fr E,,I E,, does not have an exterior normal® at x] = 0.
”

Let E be any bounded set in R¥. Put
8(E) = inf I(f), f € Foy, f(x) = 1 for x € E.
s

For any set E, put

1 In Federer's sense.
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¢(E) = inf Y 8(Eyx), Ex bounded, U E; D E.

{E) k=1

If we replace Hy_; by ¢, then Theorem 2 and the case ¢=1 of
Theorem 1 follow easily from [1]. We need to show that

¢(E) = 0 if and only if Hy_1(E) = 0.
“If” is easy. To prove “only if” we first show that §(E) =6,(E), where
01(E) = inf Hy_,(fr 7), # D B, 7 polyhedron.

Then we apply a boxing inequality recently proved by W. Gustin,
which states that any polyhedron 7 can be covered by a finite number
of cubes C; such that

Z HN_1(f1‘ C,) = KHN_1(fI' 7l’)
i

where K is a constant depending only on the dimension N.

The case =2 and Theorem 3 require in addition results of De
Giorgi and Federer, and especially an approximation theorem for
closed generalized hypersurfaces a special case of which appears in
[4, p. 331].
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