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SHIING-SHEN CHERN 

PART III . ALGEBRAIC SHEAF THEORY 

The cohomological methods, in conjunction with the powerful tool of 
harmonic integrals, were remarkably effective in the solution of global 
complex-analytic problems in general, and of problems of classical 
algebraic geometry in particular (Chern, Hirzebruch, Kodaira-
Spencer, Serre, and others). I t is natural to ask whether the cohomo­
logical methods can be equally effective in abstract algebraic geom­
etry where the method of harmonic integrals is no longer available. 
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The purely algebraic theory of sheaves developed by Serre [3]1 repre­
sents the first systematic application of cohomological algebra to ab­
stract algebraic geometry. The theory developed by Serre includes 
the "generalized lemma of Enriques-Severi" proved and so named 
by Zariski [4], and contains also the first algebraic proof of Seven's 
conjecture Pa=pa- These are highly encouraging indications of the 
power and potentialities of the cohomological method in abstract 
algebraic geometry.2 

1. The general concept of a sheaf. A sheaf J is a composite concept 
consisting of two topological spaces F and X and a continuous map­
ping (projection) T of F onto X satisfying the following conditions: 
(1) 7T is a local homeomorphism; (2) for each xÇzX the set Jx = 7r~"1 {X } 
is an abelian (additive) group; (3) the group structure of Jx varies 
continuously with x. The space X is called the base space of the sheaf, 
and Jx is called the stalk over x. If U is an open subset of X, a section 
of J over U is a continuous mapping ƒ of U into F such that irf is the 
identity on U. The sections of J over U form in an obvious way an 
abelian (additive) group, denoted by T(J, U). As U ranges over an 
open basis of X and ƒ ranges over T(J, U), the sets ƒ(£/) yield an open 
basis of F, as follows easily from the definitions. An important prop­
erty of sections is the following: if/, g&T(Jf U) and f(x)=g(x) for 
some # £ £ / , then f=g on some open neighborhood of x. In practice, 
one often introduces a sheaf J as the union F of its stalks Jx ( x G Z ) , 
and the topology of F is then defined by assigning the local sections 
of J. 

The general notions of a subsheaf of a given sheaf J, factor sheaf, 
sheaf homomorphism, direct sum and tensor product of sheaves (with 

1 Numbers in brackets refer to the bibliography at the end of this part of the re­
port. 

2 The participants of the seminar on algebraic sheaf theory had in their possession 
a short manuscript of Serre (Serre [2]) in which he gave the definitions and stated 
(almost always without proof) the basic results of the theory. It seemed fruitful to 
take this manuscript as the subject of the seminar and to try to reconstruct the 
proofs, this being the best way of acquainting ourselves with the new algebraic meth­
ods, ideas and results. The present report is based : 

(1) on the work of that seminar; 
(2) on manuscripts given to the writer of this report by J. Igusa and S. Lang 

(who, together with G. Washnitzer, were the most active members of the seminar); 
(3) on Serre's Annals paper [3] which became subsequently available and which 

formed the subject of a seminar conducted at Harvard in 1954-1955 by Igusa and the 
writer. 

The manuscript of Part III was read by S. Lang, J. Igusa, J-P. Serre and D. C. 
Spencer. The author gratefully acknowledges the helpful criticisms and comments 
made by these mathematicians. 
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the same base space) are defined in a natural fashion (Cartan [3], 
Serre [3]). I t is important to bear in mind that, by definition, a 
subsheaf J' of J is always open in F and that the canonical sheaf 
homomorphism J—+J/J' is always a continuous open mapping. A 
sheaf epimorphism3 j : J—>J" induces a homomorphism j x of Jx onto 
Jx" for each x in X and also a homomorphism ju of T(J, U) into 
r ( 7 " , U) for each open subset U of X. Furthermore, each section of 
J" is locally thej-image of a section of J. More precisely: i f / " E r ( 7 " , 
U) and x £ i 7 , there exists a neighborhood W of x, contained in U, 
and there exists a section ƒ in T(J, TF) such that i f =ƒ" on TF. 

In applications to algebraic geometry the stalks Jx of a sheaf pos­
sess, as a rule, much more structure than that of mere abelian groups. 
The stalks may be rings, and in that case the ring structure of Jx is 
assumed to vary continuously with x. Or, each Jx may be a module 
over some fixed field. Or finally—and this is the basic setup in ap­
plications to algebraic geometry—we may deal with sheaves J which 
admit a fixed basis sheaf 0 as sheaf of operators: each stalk Ox is then 
a ring, and Jx is a module over 0X, the ring structure of 0X and the 
module structure of Jx both varying continuously with x. 

2. Examples of sheaves, (a) Let X be a complex analytic manifold 
and let 0X be the ring of germs of holomorphic functions at x (xÇzX). 
A section over an open set U is then described by a function ƒ which 
is holomorphic on U (i.e., by the mapping x-*fx, where x(EzU and fx 

is the germ of ƒ at x). This is the fundamental sheaf of the classical 
theory. 

(b) Let us take for X an irreducible algebraic variety V in an affine 
or projective space, over some algebraically closed ground field k. We 
must first decide on the choice of a topology in V. In the classical 
case the choice is obvious: we take the ordinary Hausdorff topology 
of V. However, V also carries another topology, introduced by 
Zariski. In this "Zariski topology," the closed sets are the algebraic 
subvarieties of V. The Zariski topology is much weaker than the 
usual Hausdorff topology but it has a perfect meaning in the abstract 
case. Serre took the Zariski topology for his algebraic sheaf theory. 
At the same time he took as fundamental sheaf the sheaf 0 = 0v 
whose stalks 0X are the local rings of V a t the various points x of V. 
Local sections of 0 are then described by locally regular functions ƒ 
which are meromorphic on V; any such function is an element of the 
function field K of V. The points x of V where ƒ is not regular (i.e., 

3 We shall use the following terminology: a homomorphism j : A-*A' is an epi-
morphism if j maps A onto A'; it is a monomorphism if its kernel is zero; and it is an 
isomorphism if it is both an epimorphism and a monomorphism. 
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the points x such that ƒ <3z0*) form an algebraic subvariety W of F, 
and thus ƒ defines a section of 0 over U*=V--W (U is open in the 
Zariski topology). 

A sheaf on V (i.e., a sheaf having V as base space) is algebraic if it 
admits 0 as sheaf of operators. These are the sheaves studied by 
Serre. A homomorphism j between algebraic sheaves J and J" is 
called algebraic if it is 0-linear, i.e., if for every x in V the local homo­
morphism j x is 0-linear. 

The sheaf 0 itself is algebraic. What are the global sections of 0 ? 
The answer depends on whether V is an affine or projective variety. 
If V is an affine variety in r-space, then T(0 , V) is the (nonhomo-
geneous) coordinate ring R — k[xu ] of V/k. If F is a 
projective variety then T (0 , V) =k. 

Another example of an algebraic sheaf is the p4old direct product 
of 0 , denoted by 0 P . The elements of 0£ are then the ordered ^-tuples 
(#i, «2, • • • , dp), a*G0*. These sheaves play an important role in 
the theory of coherent sheaves (see next section). 

I t should be noted that if k is the field of complex numbers we have 
associated two types of sheaves with a variety V, namely Ö and 0 . 
They differ in two important respects: in the topology of their base 
space V and in the fact that 0X contains Ox but is a much bigger 
ring then 0*. Therefore in the classical case we have a priori two 
sheaf theories, or two cohomology theories of V: one is analytic, the 
other is algebraic. Serre has established an "isomorphism" between 
these two theories (see end of §7). 

(c) Let V be again an irreducible algebraic variety and let W be 
a fixed affine or projective subvariety of V. Zariski has defined in his 
memoir [3 ] the notion of a function on V which is holomorphic along 
an open subset U of W. We take W as base space and we take as stalk 
0**(#£ W) the set of germs, at x, of functions ƒ on V which are holo­
morphic along some open subset of W containing x. If we assume 
that W is irreducible and that V is analytically irreducible at each 
point of W (this latter condition is satisfied, for instance, if V is nor­
mal), then it is known that the germ of a function ƒ at x determines 
the function uniquely (Zariski [3]), This enables us to define a sheaf 
®v,w by taking the union of the stalks 0 / . I t may be of interest to 
examine the results and the unsolved questions of Zariski's memoir 
[3 ] from the standpoint of sheaf theory, by developing the properties 
of sheafs on W which admit Oy,w a s sheaf of operators. 

3. Coherent sheaves. An algebraic sheaf J on a variety V is co­
herent if locally, i.e., in the neighborhood of each point x of VfJ can 
be written in the form Op/<l>(Oq)t where p and q are non-negative 
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integers and <j> is an algebraic homomorphism of 0q into Op (p, q and 
<t> depend on x). In other words, in the neighborhood of any point x 
of V we have an exact sequence: 

(1) 0 « A 0 ^ 7 ~ > O , 

all sheaf homomorphisms being assumed algebraic. If U denotes a 
neighborhood in which (1) holds and if Ju denotes the sheaf U ^ , 
x £ £/, with U as base space (Ju— restriction of J to U), then the pre­
cise way of writing (1) is the following: 

(10 oltol^jv-^o. 
Recalling from §1 that the sections of a homomorphic image of a given 
sheaf (in this case, of the image of Ou) are locally images of sections 
of the given sheaf, the existence of the homomorphism j of Op

v onto 
Ju is equivalent with the following property of J: for each point x of V 
there exists an open set W containing x and there exists a finite set of 
sections fuft> • • • ,fP of J over Wy such that for each point y of W the 
elements fi(y), jf*(y), • • • f fP(y) form a module basis of Jy over Oy 

(or briefly: the sections/i, ƒ2, • • • , fv generate the stalk Jy for all y 
in W). An algebraic sheaf J is therefore coherent if and only if both 
J and the kernel of j have this property. This property shows that 
the theory of coherent sheaves is an additive theory, and that the 
modules entering in this theory are expected to be of finite type. I t 
turns out that most sheaves which one encounters in applications to 
algebraic geometry (for instance, the sheaves which one must con­
sider in connection with the Riemann-Roch theorem) are indeed co­
herent. I t should be noted, however, that there are interesting sheaves 
which are not coherent, for instance the sheaf of local units: the stalk 
at each point x of V consists of the units of 0*. In the classical theory 
this sheaf plays an important role which up to now has no counter­
part in the abstract theory. 

If/lf ƒ2, • • • ,fm are sections of a sheaf J over a set Z7, one denotes 
by Relx (ft, ƒ2» • • • ,fm)(xÇzU) the set of m-tuples (ai, 02, • • • , am), 
aiE:0x, such that aji(x)+a2fï(x)+ • • • +am/m(#)==0, and by 
Relcz (ft, ƒ2, • • • , f m) that subsheaf of 0y whose stalks are the mod­
ules Rel» (Ju h, • • • , ƒ » ) . Thus, returning to (1') and with the same 
notations as above, Relt; (ft, ƒ2, • • • , /p)is the kernel of j . 

The three lemmas stated below are auxiliary results which are fre­
quently used in the theory of coherent sheaves: 

LEMMA 1. IfJis a coherent sheafon V and f 1, ft, • • • , fm are sections 
of J over an open set U, then the sheaf Relu (Ju ƒ2, • • • , f m) is coherent. 
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LEMMA 2. If j is an algebraic homomorphism of a coherent sheaf J 
into a coherent sheaf Ç, then the kernel J', the image J" =j(J) and the 
co-kernel Qff" of f are coherent sheaves. 

Lemma 1 is analogous to the theorem of Oka-Cartan (Cartan [3, 
pp. 3-18, 1951-1952]). Lemma 2 is a simple consequence of Lemma 1. 

By a principal open subset U of an affine variety V we mean a sub­
set of V whose complement (boundary) V— U is the set of zeros of a 
function Q belonging to the coordinate ring R of V. I t is easily seen 
that a principal open set is again biregularly equivalent to an affine 
variety and that the set of coverings of a variety (projective or 
affine) with principal open sets is cofinal with the set of all open cover­
ings of the variety. 

LEMMA 3. If a global section f of a coherent sheaf J on an affine variety 
V is zero at each point of a principal open subset U of V and if Q = 0 is 
an equation of the boundary of U, then for some integer m we have 
Qmf=0 everywhere on V. 

The self-evident local character of this lemma allows a reduction of 
the proof to the special case in which J is isomorphic with O^/^Oy) 
(0, an algebraic homomorphism) and ƒ is the image of a global section 
of 0y . In this special case, the lemma is an easy consequence of the 
Hubert Nullstellensatz. 

The above definitions and lemmas hold both for affine and projec­
tive varieties, and indeed they remain valid for "abstract varieties" 
in the sense of Weil. While the ultimate goal of the cohomological 
theory of sheaves lies in the direction of projective varieties (or even 
"abstract varieties" in the sense of Weil), a preliminary study of 
sheaves on affine varieties is essential, since the set of open coverings 
of a projective variety V by affine varieties is cofinal with the set of 
all open coverings of V. The first part of the seminar was therefore 
entirely devoted to coherent sheaves on affine varieties. 

4. Cohomology groups and exact cohomology sequences. Return­
ing to the general theory of an arbitrary topological space X and an 
arbitrary sheaf J over X, one can define cohomology groups Hq(X, J) 
of X, with coefficients in J, by the Cech methods, as follows: 

If U = { Ui\ is a finite open covering of X by open sets Ui, a g-co-
chain ƒ, with coefficients in J9 is a function which associates with each 
^-simplex <r={Z7»-0f Uiv • • • , Uiq} of the covering U a section 
/»o.*'i."*.<tf °f 7 o v e r the support (sup a) UijTMJif^ • • • C\Uiq of a 
(it is assumed that ƒ is an alternating function of the indices i0t 

ii, * • - , iq). The set of all g-cochains (relative to the given covering 
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U) is denoted by C*(U, 7)- One defines the coboundary 8/ by the usual 
formula 

<H-I 

*o*i • • 'ÎQ+1 ** 2-4 \*-) jHh• • •*;• • 'U+v 

where the sections of J on the right must be intended actually as re­
striction maps of UiQC\ Uixr\ • • • Uiq+V This yields cochains, cocycles 
and cohomology groups Hq(VL, J) depending on the covering U, ex­
cept that it is immediately seen that iî°(U, J) is isomorphic with T(J, X) 
and is thus independent of the covering U. One then passes to the 
inductive limit of the groups Hq(Uf J) on the directed set of all finite 
open coverings of X and one thus obtains the cohomology groups 

H«{X, 7)-
Suppose that we have an exact sequence of sheaves (over the same 

base space X) : 

(i) o->7'->y->:r-*o. 

Then for any open covering U of X we find immediately a correspond­
ing exact sequence 

(2) o -» c«(u, 70 -^ c«(u, 7) ^ c«(U, 7"). 

In general, j is not necessarily onto, so that we cannot complete the 
sequence (2) with a 0 at the end. 

In the classical case, where we are dealing with spaces X which 
are paracompact and Hausdorff, one can nevertheless obtain a cor­
responding exact sequence of the cohomology groups Hq(X, J) : 

o -> HKX, 70 -* > H«(X, 70 -> H*(X, 7) ~> H«(x, 7") 

A proof can be found in mimeographed Princeton notes, Chapter 1, 
Sheaves, by J. C. Moore. The following outline of a simplified proof 
has been communicated by D. C. Spencer and is based on the treat­
ment of Godement-Serre (mimeographed notes of Godement's lec­
tures at the University of Illinois, 1954-1955, and Serre [3]). 

We shall use the notion of a "pre-sheaP (Leray sheaf). A pre-
sheaf assigns to each open set U of the topological space X a. K-mod-
ule A(U), K—a principal ideal ring. If U and V are open sets and 
V(ZU, there is a i£-homomorphism pvu' A(U)—>A(V) such that for 
WC.VQU we have the transitivity condition pwvpvu =pwu> Note 
that any pre-sheaf defines, by passing to limts, a sheaf over X. 

*/) 
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A homomorphism #: A-+B of the pre-sheaf A into the pre-sheaf B 
is, for each open U, a i£-homomorphism A(U)—>B(U) which com­
mutes with the restriction homomorphism pVu. A sequence 0—>̂ 4' 
—»^4—»,4"-->0 of pre-sheaf homomorphism is said to be exact if and 
only if 0—>A'(U)->A(U)-*A"(U)—>0 is exact for every open U. I t 
follows that if we have an exact sequence 0—>A'—>A-*Aff—»0 of pre-
sheaf homomorphisms and if U is an open covering of X, then we also 
have the following exact sequence 

(4) 0 -> C*(U, A') 4 C«(U, 4 ) - i C«(U, 4" ) -> 0, 

where the group C9(U, -4) of g-cochains with coefficients in a pre-sheaf 
is defined in the same way as in the case of sheaves. Then by a stand­
ard construction of algebraic topology there follows from the exact­
ness of (4) the existence of an exact cohomology sequence: 

0 -> #°(U, A') ^ #°(U, A)U > H«(U, A') 

(5) i* j * à* 
-> JST«(U, il) ^ #*(U, 4" ) -» #*+1(U, A') -> • • • . 

Passing to the inductive limit we obtain a corresponding exact se­
quence of cohomology groups Hq(X, A): 

0 -> #°(X, il ') -> > Hq(X, A') ~> #*(X, il) -> #«(X, 4" ) 
(6) 

-> Hq+1(X, A') -> • • • . 

One proves quite simply the following result: 
Let X be para compact and Hausdorff and let N be a pre-sheaf 

such that : (a) N{U) = 0 if 17 = 0 ; (b) the sheaf defined by iV is zero. 
Then Hq(X, N)=0 for all g ^ 0 . As a corollary we obtain the result 
that, if 0 : A-+A' is a homomorphism of pre-sheaves which induces an 
isomorphism of the corresponding sheaves J, J' then Hq(X, J) 
^Hq{X,Jf) for all q 2:0. 

Now consider an exact sequence Q-+J'—>iJ-*iJ"--:>0 of homomor­
phisms of sheaves. The modules T(J', U), T(J, U) and T(J'\ U) define 
pre-sheaves A', A and A", and we have an exact sequence 

o -> r(7', to -* T(j, u) -> r0(7', to -> o, 
where r 0 ( 7 " , U) denotes the image of T(J, U) in r ( J " , £7). Clearly, 
also the modules T0(J", U) define a pre-sheaf, which we shall denote 
by A", so that we have the exact sequence 0—*A'—>A—>AQ' —»0. We 
have furthermore the exact sequence 0—>A" ~>A"—>Q-*0, i.e., 

(7) o -+ To(7", u) -• r(j", u) -> Q(U) -> o, 
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where the pre-sheaf Q defines in the limit the zero sheaf (this is so be­
cause locally each section of J" is the j-image of a section of J). 
From the exactness of the pre-sheaf homomorphisms (7), we find, 
using (6) and observing that H*(X, A")Ç*H<i(X, J"): 

H«(X, Ao") SE ff«(X, A") ^ H*(X, 7 0 . 

Therefore, applying (6) to the exact sequence 0—>A'—>A —*A 0' ' , we 
find the desired cohomology sequence (3), since HQ(X, A ')^Hq{X, J') 
and Jff«(-Y, A)9ÉH*(X, J ) . 

Since the existence of the exact sequence (3) is the key to all the 
applications of sheaf theory, it is essential to establish (3) for coherent 
sheaves also in the abstract case. In the abstract case, however, it 
turns out that even the sequence (2) can be completed with a zero at the 
end. The problem then is to prove that j maps CÖ(U, J) onto C9(U, J"), 
if J and J" are coherent sheaves, and it is sufficient to prove this only 
for coverings U by principal open sets. If U is such a covering, then the 
support Uior\l/^Pi - - - C\Ui of every simplex of the nerve of U is 
again a principal open set, hence is biregularly equivalent to an 
affine variety. Thus, our problem is therefore to prove the following 
theorem : 

THEOREM 1. If j is an algebraic homomorphism of a coherent sheaf J 
onto a coherent sheaf J" on an affine variety V, then j maps T(J, V) 
onto T(J", V). 

In the proof of this theorem there are three distinct stages which 
can be summarized as follows: 

1. First one proves directly Theorem 1 in the special case J — Oy. 
The proof in this case is a simple application of Lemma 3 (§3), in 
conjunction with the fact that locally the sections of J" are ./-images 
of sections of J (§1). 

2. Using the above special case of Theorem 1 one obtains easily the 
following important auxiliary result: 

LEMMA 4. If J is the homomorphic image of &y ( V—an affine variety) 
and f is a section of J over a principal open subset U of V having bound­
ary Q = 0 (Q—an element of the coordinate ring of V), then for suffi-
ciently high integers q the section Q9f can be extended to a section of J 
over V. 

Actually, Lemma 4 already has to be used at Step 1, but only in 
the special case 7 = 0^ , and in that case the lemma is trivial. 

3. Finally, using Lemma 4 and the fact that locally every coherent 
sheaf is of the form Om/<t>{Oq)1 one proves the following basic result: 
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THEOREM 2. IfJ is a coherent sheaf on an affine variety V, then there 
exists an exact sequence: 

Thus, for affine varieties, the local conditions which define coherent 
sheaves (see (1), §3) can be replaced by one similar global condition. 
At any rate, every coherent sheaf on an affine variety V is thus a 
homomorphic image of &y, for some m. 

Theorem 1 now follows easily. For, we have a homomorphism a of 
&y onto J, for some tn, and thus ja is a homomorphism of &™ onto 
J". If f"ET(J", TO, we have, by the special case of Theorem 1, 
proved in step 1, that ƒ " = (ja) (g), for some g in T(&y1 V). If we set 
f=a(g), then ƒ"=./(ƒ) and fGT(% V). 

The so-called "partition of unity" which played an important role 
in the classical theory has the following algebraic analogue which is 
also used in the abstract case (and in the proofs of Theorems 1 and 
2) : If U is a finite covering of an affine variety V by principal open sub­
sets Ui and if Qi = 0 is an equation of the boundary of J7»(Q»-£1?), then 
there exist elements Gj in R such that X)^*ö* ̂  1 • This is another formu­
lation of the Hubert Nullstellensatz. 

5. Cohomological properties of coherent sheaves on affine varieties. 
A sheaf J on a variety V is said to be semifine (Serre [l ]) if it satisfies 
the following two conditions: 

SF. l . H\Vy J) (i.e., T(J, F)) generates the stalk Jx over 0X at 
every point x of V. 

SF.2. i ï * ( F , 7 ) = 0 i f q>0. 
Theorem 2 (§4) shows that every coherent sheaf y over an affine 

variety V satisfies condition SF. l . In fact, if J is the image of (9f, 
under a homomorphism j , and Ei, £2, • • • , Em are the basic unit 
sections of T(Ofv, V)y the m global section j(Ei) of J generates Jx 

over ©x a t every point x. Note that JEi, £2, • • • , Em generate 
r(OÇ, V) over the coordinate ring R of V(R = T(0V, V)). Since, by 
Theorem 1, j induces a i?-homomorphism of Y(Gry1 V) onto T(7, TO, 
it follows that j(Ei), j(E%), • • • , j(Em) generate T(J, V) over R. 
Thus, Theorems 1 and 2 show that H°(V, J) is finitely generated over 
R (V—affine, J—coherent). 

If we apply the above argument to any subset U of V such that U 
itself is biregularly equivalent to an affine variety, we find that the 
restrictions of the j(E%) to [/generate T(J, U) over T(0V, U). We 
have thus found that every coherent sheaf J on an affine variety V 
enjoys the following property: there exists a finite number of global 
sections fi, ƒ*, • • • ,fmofJ such that for any open subset U of V which 
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is biregularly equivalent to an affine variety (in particular, for any prin­
cipal open subset U of V) the restrictions of thefi to U generate T(J, U) 
over the coordinate ring T(0Vt U) of U. From this property, and using 
the algebraic analogue of the "partition of unity" for affine varieties 
(§4), it follows by a well-known argument (Weil [2]) that if U is a 
finite covering of an affine variety V by principal subsets Ui, then 
Hq(VL, J) = 0 for q>0. Since the set of finite coverings of V by prin­
cipal subsets is co-final with the set of all open coverings of V, it 
follows that Hq(V, J ) = 0 if £ > 0 , and this is condition SF.2. We have 
therefore 

THEOREM 3. Every coherent sheaf J on an affine variety is semi-fine, 
and for such a sheaf we have that H°(Vy J) is finitely generated over the 
coordinate ring R of V (cf. Cartan [3, Exp. 18-19, 1951-1952]). 

If we set M~H°(V, J), then M is a finitely generated i?-module, 
and it generates Jx at every point x of V. Conversely, starting with 
any finite i£-module M we can define a sheaf J over V by setting 
JX = MRX0X ( = tensor product, over the common ring of operators 
R) and by defining local sections in a natural manner, by means of 
the local sections of CV. One finds then that there is a (1, 1) cor­
respondence between finite i£-modules and coherent sheaves over V. 

All these results (except the property of H°ÇV, J) of being finitely 
generated) are analogous to well-known statements concerning Stein 
varieties (see Part I of this report) and coherent sheaves over them. 
However, the proofs for affine varieties are much easier, and, as we 
have seen, are essentially of elementary nature. 

Using a well-known theorem on "double complexes" (Leray [ l ] ; 
H. Cartan [3, 1953-1954]), one derives at once from Theorem 3 the 
following result (Serre [3 ] ; for the classical case see Leray [ l ] , Weil 
[2]): 

THEOREM 4. If U is a finite covering of a variety V by affine varieties 
Ui and J is a coherent sheaf on V, then the canonical homomorphism of 
Hq(\l, J) into Hq(V, J) is an isomorphism. 

Theorem 4 shows that to catch the cohomology group of an arbi­
trary variety V, relative to a given coherent sheaf, it is not necessary 
to pass to the inductive limit: those groups which are obtained from 
the nerve of a covering of V by affine varieties are already isomorphic 
to the inductive limit. The cohomology groups of V (in the case of 
coherent sheaves) can therefore be found by purely algebraic proc­
esses. 

6. Coherent sheaves on projective varieties. A first consequence of 
Theorem 4 is the following: if J is a coherent sheaf on a projective 
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variety F, of dimension m, then Hq(V1 J)—0 for q>m. In view of 
Theorem 4 it is sufficient to show that HQ(U, J ) = 0 , q>m and for 
some finite covering U of F by affine varieties. We fix m + 1 hyper-
planes Hi which have no point in common on V. Then U = { V—Hi} 
is a covering of V by principal open sets, and since the nerve of U 
has only m + 1 vertices it follows that Hq(]l, J) = 0 for q>m.—Before 
Serre, this result was derived from DolbeauWs isomorphism (Dol-
beault [ l ]) , but for locally free sheaves only. 

The treatment of sheaves on projective varieties is greatly facili­
tated by the operation of extension of sheaves. This operation allows 
us to replace any sheaf J over a variety F by a sheaf Ç carried by the 
ambient projective space X of F: we simply set Çx=7x for x £ F and 
(ƒ* = 0 if xQV. Conversely, if a sheaf Ç over X is such that Çx = 0 
outside of a variety F, then Ç gives rise to a unique sheaf J carried 
by F. We shall often identify sheaves J and Ç in such a relation, 
since it is easily seen that H*(V, J) =Hq(X, Ç) for all q. If J is alge­
braic then Ç is always algebraic (in a natural way), for the local ring 
0x,v of any point x of F is a homomorphic image of the local ring 
&z,x of this point, when x is regarded as a point of X, whence the 
0s,y-module Jx is also an (9x,x-module. The converse is not always 
true. However, if both J and Ç are algebraic and if one of them is 
coherent then also the other is coherent. 

Now let us restrict ourselves to sheaves J over the projective 
r-space X. In practice, J will vanish outside the irreducible projective 
variety F which is the object of study, and in that case we shall say 
that J is carried by V. 

Let J be an algebraic sheaf over X. A basic operation considered 
by Serre is the one which associates with J, and with any integer n, 
another algebraic sheaf J(n). This sheaf J(n) is defined as follows: 

Let 3>o, yit ' • ' > yr be homogeneous coordinates in X and let £/»• 
be the open set defined by yi 9*0. We consider t he r + 1 sheaves F1— Ju4: 

( = restriction of J to £/»•) and we patch them up together again, but 
by a different rule: if # £ UiCWj and/»Gjz, / ; £ 7 i , then we identify 
fi and fi if 

<» '<-©"'<• 
(Note that (1) makes sense since yt/yj is a unit in Ox if xG U%r\Uj.) 
Every element of the stalk of J(n)x shall have a unique representative 
in %, if x G Ui, and two representatives ƒ*, ƒ,• of ƒ (if # £ UiC\ U3) shall 
be related by (1). A sheaf structure is then introduced in J(n) in a 
natural way, so that J(n) and J axe locally isomorphic everywhere. 
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It follows that J(n) is coherent if J is coherent. Note that 7(0) —J. 
The geometric meaning of the sheaf J(n) becomes clear in the im­

portant special case in which J is a sheaf carried by V and associated 
with a divisor D on V (we shall assume that V is normal). Then, for 
x G F , Jx is the set of rational functions ƒ on V such that (f)+D>0 
locally at the point x. The global sections of J are given by the func­
tions ƒ such that (f)+D>0 globally on V. These functions ƒ form a 
finite-dinensional vector space T(J, V) over k, say of dimension 
p + 1, and the set of integral cycles (f)+D,fET(J, V),fjé0, is the 
complete linear system \D\, which is then of dimension p. The sheaf 
J associated with a divisor D will be denoted by /1(D). Note the rela­
tion 

(2) dim H°(V, J£(D)) = 1 + dim | D | . 

If D and D' are linearly equivalent divisors, so that Z> — jD' = (a), 
aÇiK, then JÇJD) and JÇJ^D') are isomorphic sheaves, the isomorphism 
being obtained by multiplying the sheaf elements of JÇJJJ) by a. 

I t is now not difficult to see that if C denotes a hyper plane section 
of V and Cn is any divisor linearly equivalent to nC, then jÇJJ))(n) is 
isomorphic with «£(£> + C n ) . I t is sufficient to prove this for one par­
ticular Cn, and we shall take for Cn the divisor nC°, where C° is the 
section of F with the hyperplane yo = 0 (we may assume, without loss 
of generality, that this hyperplane does not contain the variety F). 
If f&£(D)(n)x{xÇzV) and ƒ,• is a representative of ƒ in J(^(D)Ui 

( O ^ i g r ; x G Ui), then/ ( w ) =fi(yi/yo)n depends only o n / , by (1), and 
belongs to «£(£>+fzC0)*- It is then immediately seen that the mapping 
ƒ_»ƒ(«) i s a n isomorphism of j(^(D)(n) with jf(D-\-nC°). 

The study of the complete linear systems |Z)+wC| is fundamental 
in theory of linear systems on V, and the sheaf-theoretic analogue of 
this is the study of the sheaves J(^(D)(n). 

If D is null divisor, then jQj^D) is the sheaf &v. I t follows tha t 
Oyin) is isomorphic with £(nC0). 

Let R = k[z0} Z\, • • • , zr] be the homogeneous coordinate ring of V, 
where z0, Z\, - • • , zr are therefore strictly homogeneous coordinates 
of the general point of V/k. Then R = 2n"-°o ^w is graded ring, and 
also its integral closure 1 = 22*„o In is a graded ring (Zariski [ l ] ) ; 
here Rn and In are the sets of homogeneous elements (of R and ƒ, 
respectively) which are of degree n. From known theorems on normal 
varieties it follows that 

(3) r(<SV(«)f J O S I», 

(30 r (0 F (») f V) S *»(« /») , if n is large, 
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all the isomorphisms being canonical. 
If V is not normal then the following can be easily proved: there 

exists a greatest graded ring J== ]C*«o Jn between R and I such that the 
conductor of R relative to J contains a power of the irrelevant ideal 
(z0l zi, • • • , zn)(J = I if and only if V is normal; Jn — Jr\In)> and 
relations (3), (3') continue to hold if we replace I by J. 

Another representation of the sheaf 0v(n) is the following: the stalk 
®v{n)x (xÇ:V) consists of the quotients of the form 

f(Z0, a*, . . . . . , Zr)/g(Zo, * ! , • • • , *r) , 

where f and g are forms of degree j+n and j respectively (j-arbitrary) 
and where the form g does not vanish at the point x. From this represen­
tation of Oy(n) it follows that the product of an element of Ov(n)x 

by a form of degree s in y0i yi, • • • , yr can be identified with a well-
defined element of 0v(n+s)x. 

If J is an arbitrary sheaf then a representation of Jin) is the follow­
ing: J(n) is isomorphic to the tensor product J®Ov(n), i.e., 

7(n). s 7. «0.0(11),. 
Gx 

REMARK. From this representation of 7 it follows that the product 
of any element of J(n)x by any form of degree h in yQl yu • • • , yr 

can be identified with a well-defined element of J{n+h)x. Conse­
quently, if S denotes the polynomial ring k[yo, yi, • • • , yr] and Sh 
is the set of forms of degree h then we can write ShH°(V, J(n)) 
CH°(V, J(n+h)). Later we shall make use of this remark. 

Before going further with our summary we shall make some general 
remarks about the methods of proof. There are essentially two prin­
cipal methods: 

a. The inductive, algebro-geometric method. 
b. The abstract method of cohomological algebra of functors. We 

shall describe briefly these two methods. 
The inductive method. Let 7 be a coherent sheaf over our variety V. 

The operation J"-*J(n) and the extension of 7 to the whole projective 
space are commutative operations. Hence we may assume that 7 is 
defined over the whole of X. Let L(y) be an arbitrary linear form in 
the y's. If /G7«» the collection of elements fL{y)/yi1 where i ranges 
over those indices 0 , 1 , • • • , r for which x(~ Ui, represents an element 
<t>(f) of 7(1)*- Thus we get an algebraic homomorphism of 7 into 
7(1), and by Lemma 2 (§3) the kernel •£ and cokernel M of <f> are 
both coherent. If we replace here J by J(n), then J(l), J£ and M must 
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be replaced by J(n + l), JÇjji), Üït(n), Hence we have an exact se­
quence of the form: 

(4) 0 -> / » -> 7(n) -» J{n + 1) -> M(n) - • 0. 

The equation L(y) = 0 defines a hyperplane F, and F is of course a 
projective space of dimension r — 1. I t is not difficult to see that the 
sheaves •£(») and M(n) are zero outside of F, hence are carried by F. 
Moreover it can be verified that they are algebraic, hence coherent, 
as sheaves with F as base space. The sequence (4) offers therefore a 
general method for applying induction with respect to the dimension 
m of the carrier V of J, for the sheaves j£j(n) and M(n) are zero out­
side Vr\Y, and VC\Y is of dimension m — 1. If we wish to prove a 
theorem which contains, among its assumptions, the assumption that 
V satisfies a certain condition (say, that V is irreducible, or non-
singular or normal), the success of the induction will depend, among 
other things, on the possibility of choosing the hyperplane F in such 
a manner that also VC\ Y satisfies that same condition (if the condi­
tion is one of those which we have mentioned above in parenthesis, 
such a choice is always possible). 

The method just outlined is standard in the classical theory, and 
many arguments involving only this method in the analytical case 
can be made abstract without too great difficulty. The following out­
line of the proofs of the two fundamental theorems given below 
(Theorems 5 and 6) will illustrate this method. 

THEOREM 5. If J is a coherent sheaf over X then the sheaf J(n) is 
semi-fine for all sufficiently large n. 

THEOREM 6. If J is a coherent sheaf over X then all the cohomology 
groups HQ(X, J) are finite dimensional (as vector spaces over the ground 
field k). 

I t is easy to see that J(n) satisfies condition SF.l (see §5) if n is 
large. In fact, we know that each of the sheaves Juit i = 0, 1, • • • , r, 
is semifine. Since J(n)x. is essentially Jx, for all x £ Z , it is sufficient 
to show that if ƒ is any section of J over one of the Ui, say over C/0, 
then, for large n, ƒ can be extended to a global section g of J(n). From 
Lemma 4 and Theorem 2 (§4) it follows that (yo/yi)nf can be con­
sidered as the restriction to Ü70n Ui of a section f\n) of J over Uiy 

provided n is sufficiently large. The desired global section g of J(n) 
is the one defined by the r+1 partial sections ƒ<(n), i = 0, 1, • • • , r. 

We now show that J(n) also satisfies condition SF.2 if n is large, 
and we begin with the case J~&y. In this case we have o£=0 (essen-
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tially because each Ox is an integral domain) and the exact sequence 
(4) now specializes to O->Op(n)->0p(n+l)->&p

Y(n + l)-->O. If we as­
sume by induction that 0y(n + l) has the property SF.2, we get 
canonical isomorphisms: Hq(X, 0p(n))-*Hq(X, 0p(n+s)) for q>l 
a n d f o r s > 0 . Since the mapping: H°(Xf 6p(n + l))->H°(Yy 0p

Y(n + l)) 
is an epimorphism, we get a similar isomorphism also for g = l . If we 
combine with this the remark that every coherent sheaf over X — Y 
is semifine, we can prove that Hq(X, 0p(n))=O, i.e., 0p(n) has the 
property SF.2. We can now treat the general case. Since J(n) has 
the property SF.l for n sufficiently large, we have an algebraic homo-
morphism from 0P onto J(n). Let ^ be the kernel of this homomor-
phism. Then for any s we have an exact sequence of the form 0—»$((s) 
->0p(s)->J(n+s)~*O, and therefore H*(X, J(n+s))=Hq+l(X, 9,(s)) 
by the special case treated above. After r — q+1 steps we get an iso­
morphism between Hq(X, J(n)) and an (r-f-l)thcohomology group of 
a coherent sheaf over X, provided n is sufficiently large. However 
this is zero by the result stated in the beginning of this section. Thus 
Theorem 5 is proved. 

From this theorem it follows that 

(5) 0 -> <BJi-n) -> 0 * ( - n ) -* J -> 0, 

for n sufficiently large, and it is therefore sufficient to prove Theorem 
6 for ©*( — ») and <R£—n). Moreover, since H°(X, <B£—n)) is a sub-
space of H°(Xy 0p( — n)), and since the latter is of dimension p or zero 
according as r = 0 or positive, the former is of finite dimension. We 
shall denote by Ç* either %{—n) or Qp(~•«), and we shall show that 
HQ(X, Ç) is of finite dimension for q>0. If we take Q as J in (4), 
we get 0—>Ç(s)—>Ç(s + l)~->yrt(s)—>0. If we apply an induction on r, 
we may assume that Hq( F, Vfi(s)) is of finite dimension for all s. Then 
Hq(X, Ç(s)) and Hq(X, ^ ( 5 + 1 ) ) have or have not finite dimensions 
at the same time. However, since Hq(X, C(s))=0 for s sufficiently 
large, Hq(X, Ç) must be of finite dimension. 

The abstract method of functorial algebra. If J is an algebraic sheaf 
u«or the projective space X we set 

(̂50 = E n,(y, ?(«)), W)„ - H0(V, j(n)), 
n 

where n ranges over the set of all integers and where the sum is direct. 
By a remark made earlier in this section, M(J) is a graded 5-module. 
I t turns out that J is coherent if and only if there exists an integer no 
such that ]£;!"=* o M(J)n if a finite S-module and that the mapping 
J-^^n^no M(J)n is a (1, 1) correspondence between coherent sheaves 
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and finite S-modules, provided two such modules which differ only in 
their components of low degrees are identified. Geometric theorems can 
then be translated into algebraic theorems concerning certain functors 
derived from such modules (in particular, the so-called extension func­
tors), and the powerful technique of modern functorial algebra can 
then be used. This method, developed in full by Serre in [3], has not 
been considered in the seminar, for the lack of knowledge and time. 
However, by using this method, in conjunction with the inductive 
method described above, Serre was able to prove abstractly his funda­
mental duality theorem (see below, §8) and therefore also the equal­
ity Pa—Pa conjectured by Severi (see Zariski [4]; cf. also §8). So it 
would seem that the deeper results of theory of sheaves over algebraic 
varieties depend on the possibility of applying this second abstract 
method of functor algebra. 

7. The arithmetic genera. We have now enough tools to reproduce, 
by sheaf-theoretic methods, the algebraic theory of arithmetic genera 
given by Zariski in [4]. The method used by Serre is largely the same 
as the one used by Kodaira and Spencer in [l ]. If J is a coherent sheaf 
on our ra-dimensional variety V, in the projective space, then the 
Euler-Poincaré characteristic of V, with coefficients in J, is defined by 

m 

x(Y,J) = Z(-l)«dim#*(F,7). 

(Recall Theorem 6 and note that dim H*(V9 J)=0iîq>m). 
If we apply an induction using the fundamental exact sequence (4) 

of §6, we can show easily that x(V* 7M) is a polynomial in n for all 
n, of degree at most equal to m. Also, for n sufficiently large, this 
polynomial coincides with dim H°(V, J(n)), by the property SF.2 of 
J(n) (Theorem 5). In particular, if we remark that, for large n, 
H°(V, 0{n)) is canonically isomorphic with the module Rn of homo­
geneous elements of degree n in the homogeneous coordinates ring 
R of V (see §6; also Zariski [ l]) , we see that x(V> 0{n)) is nothing 
but the Hubert polynomial of V. Therefore 

m 

x(V, O) = E ( - 1 ) ' dim H*(V, 0 ) 

is the constant term of this polynomial, and consequently 

(1) x(Y,0) = i + ( - l )* f . f 

where pa is the arithmetic genus of V. Since the sheaf theory is invari­
ant under biregular transformations, x(V> 0 ) is a biregular invariant 
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of V. This theorem was proved by Muhly and Zariski [ l ] for normal 
varieties, but under more general transformations. On the other hand, 
Kodaira and Spencer [l ] used the above expression of the arithmetic 
genus to prove its birational invariance for nonsingular varieties over 
the complex field. Firstly, Hq( Vy O) is isomorphic to the space of "har­
monic forms of type (0, q)," by Dolbeault's isomorphism and then by 
the decomposition formula of harmonic forms. Secondly, if we pass to 
the complex conjugates of those forms, we get harmonic forms of 
type (ut 0), i.e., algebraic differential forms of degree q of the first 
kind. Finally, these forms behave nicely under birational transforma­
tions, and, e.g., the number gq of linearly independent forms is bira-
tionally invariant for every q. Done! 

It is worthwhile to remark here the following: Kodaira and Spencer 
considered only analytic sheaves over nonsingular varieties with the 
usual Hausdorff topology. Thus, in the classical case, there are two 
cohomology groups, one is analytic, and the other is algebraic. Also, 
theorems concerning these cohomology groups are similar. Since the 
Zariski topology is weaker than the Hausdorff topology, we can define 
a mapping from the algebraic cohomology groups into the correspond­
ing analytic cohomology groups which commutes with homomor-
phisms in both theories. However, since the mapping is an isomor­
phism for zero-dimensional cohomology groups and since the J(n) 
have the property SF.2 for coherent sheaves J in both theories, the 
mapping gives an "isomorphism" of the two theories. 

Let us now assume that V is nonsingular. For every divisor D on V 
we define a numerical character xv(D) of D by 

(2) xv(D) = x(V, ©) - x(V, £(-D)). 

Then xv(D) has the characteristic properties which Zariski [4] proved 
for the "virtual arithmetic genus pa(D) of D with respect to V," and 
from this it follows easily that 

(3) xr(D) = l + (-l)m~lpa(D). 

This we can show by taking L(D) as F in the fundamental exact se­
quence (4) of §6 (cf. Kodaira-Spencer [ l ]) . Thus the virtual arith­
metic genera are connected with sheaf theory. 

8. Theorem of Riemann-Roch and related topics. If D is a divisor 
on V, we shall write h«(D) for dim H«(7 , ^(2?)) and X(V, D) for 
X(V, JÇJLD)). We shall also write x(V) for X(V, 0). If C denotes a 
hyperplane section of V, then it is known (Zariski [4]) that 

(1) 1 + d i m | D + nC | = (-l)m{p*(V) + pa(-D-nC)}, 
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for n large. This result can also be derived, by sheaf-theory, from (1) 
and (3) of §7 and from the fact that the sheaf £(D+nC) (=£(D)(n)) 
is semifine if n is large (Theorem 5, §6). Namely, if n is large, then 
the left-hand side of (1) coincides with x(V> D+nC), while the right-
hand side is equal to x(V)-~Xv(~D—nC)} and (1) now follows from 
the definition of the symbol xv(—D—nC) (see (2), §7). 

The expression (-~l)m{pa(V)+pa( —D)} + 1 , which is not in gen­
eral equal to the dimension of the complete linear system | D\, may 
be said—to use a time-honored expression of the Italian geometers— 
to represent the virtual dimension of \D\. Relation (1) tells us that 
for large n the virtual dimension of | P + w C | coincides with the 
effective dimension. We have, by (1) and (3) of §7: 

(2) ( - l ) -{Pa(V) + pa(-D)} = X(V, D). 

This precise equality can be regarded, in a limited sense, as a general­
ization of the Riemann-Roch theorem to varieties. Sheaf theory tells us 
that the virtual dimension of \D\, increased by 1, equals the Euler-
Poincarê characteristic of F, with coefficients in the sheaf L(D). 

In this connection it may be pointed out that the following formula 
is implicitly contained in Zariski [4]: 

m 

(20 (-l)-{#.O0 + P*(-D)} - £ (-!)%(#), 

where 5o(D) = l + d i m \D\; 
SI(D) = deficiency of the linear system {-D(1)} cut out on a generic 

Cn by the complete linear system |Z> + CW| ; here n is a sufficiently 
high integer, and Cn is the section of F with a hypersurface of order n. 

SÏ(D) = deficiency of the linear system {Z>(2)} cut out on CnC^ by 
the complete linear system \D(1)\ Î here n' is sufficiently large with 
respect to n, and Cn>' is generic with respect to Cn; and so on, except 
tha t sm(D) is defined as the index of specialty of the zero-dimensional 
cycle JD<«-1> cut out on the curve Cn- Cn» • • • CjZ-tf by Cnfc#. I t is 
clear that so(D)=h°(D). Using the duality relation (8) established 
below it is possible to show that sm(D) =hm(D). 

In the case of curves (m = 1), pa( V) is the genus of the curve V, and 
pa(—D) = —deg JD — 1, and thus we have by (2): 

dim | D | == deg D - g + h}(D). 

It follows by the classical Riemann-Roch theorem that 

(3) h*(D) = h°(K - Z>), 

where K is a canonical divisor on V. 
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For m > 1 a satisfactory algebro-geometric characterization of the 
cohomological dimension hq(D), q>0, is still missing, except for 
q = mf in which case we have a fundamental duality relation similar 
to (3): 

(4) h"{D) = h\K - D), 

where K is again a canonical divisor on V, i.e., the divisor of an m-fold 
differential on V. This equality follows readily from the so-called 
"lemma of Enriques-Severi-Zariski , , proved by Zariski [4], which 
states that "if D is any divisor on V and Cn is a general section of V 
by a hyper surface of order ny then for n sufficiently large the linear sys­
tem Trcn | D | , cut out on Cn by the complete linear system \D\,is itself 
complete." An equivalent formulation is the following equality: 

(5) dim | D | = dim \D-Cn\ , 

if n is large, since for large n we have dim \D\ =dim Trcn \D\. If 
Cn is another member of | Cn\, different from Cw, then—always under 
the assumption that Cn is a general section of V—it can be shown 
that the following sequence is exact: 

0 -> jQiD) ^ JC(D + Cn') 4 £(C n , (D + CO-C*) -» 0 

(where the quotient sheaf «£(Cn, (D-\-Cn)- Cn) denotes the sheaf 
on Cni defined by the divisor (D + Cn) • Cn), and the corresponding 
exact cohomology sequence 

> H*(V, £(D + Cn' )) U H«(Cn, £((Z> + Ci ) -Cn)) 

(6) S H*KV, £{D)) i H*KV, £(D + C»' ))->•• • 
shows that if q > 0 and n is sufficiently large, then the two middle terms 
are isomorphic (since j£(D + Cn) is then semifine) and hence 

(7) h«(Cn, (D + Ci)-Cn) = h**KD), 

(n—large, q>0). In view of (3), we can prove (4) by induction with 
respect to m: Writing (7) for g = ra — l (we may assume w > l ) and 
using our induction hypothesis we find 

A*(Z>) = h\C%, K- (D + CD'Cn), 

where X is a canonical divisor on Cw. It is known (Zariski [4]) that 
'K~(K+Cn)-Cn. Hence h™(D)=h°(Cn, (K-D)-Cn), i.e., 

(8) ft~(D) = 1 + dim | (K - D) Cn | , 
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n large, and now (4) follows in view of the lemma of Enriques-Severi-
Zariski (5), as applied to the divisor K — D. 

Conversely, the Zariski result (5) follows from the duality formula 
(4), in view of (8). 

For m = 2 the Riemann-Roch formula (2) together with the duality 
formula (4) yields the relation 

dim | D | - pa(V) + pa(-D) - dim | K - D \ + h\D), 

and hence the well-known Riemann-Roch inequality dim \D\ ^pa(V) 
+pa(—.29)—dim IK—D\, and hl(D) therefore coincides with the so-
called superabundance of | D | . 

Another result that is equivalent with the lemma of Enriques-
Severi-Zariski is the following: 

(9) h\D - Cn) = 0, 

if n is large. In the proof of (9) we may replace D by D + Chf h arbi­
trary. Therefore we may assume that hx{D) = 0. If in (6) we replace 
D by D — Cn, we find, for large n: 

0 -» #°(F , £(D - Cn)) £ #°(F, J&D)) £ H\Cn> £{D-Cn)) 
(10) 

-> HKV,JZ(D-Cn))->(>-+••-. 

Now, Zariski's result (5) signifies that j * is an epimorphism if n is 
large. Since (10) is exact, we must have Hl(V, JÇJ<P~Cw))=0, i.e., 
A 1 ( ^ ~ C n ) = 0 . Conversely, if hl(D-Cn)=0, then (10) shows that j * 
is an epimorphism. 

We have thus three basic but equivalent statements: (4), (5) and 
(9). We have outlined the proofs of (4) and (9) by using the relation 
(5) which we have proved in [4] by a direct algebro-geometric argu­
ment (and for normal, not only nonsingular, varieties). Serre gave 
two sheaf-theoretic proofs of these results. The first proof (unpub­
lished; cf. Serre [4]) uses explicitly the w-fold differentials on F and 
is—in part—an adaptation of an argument used by Weil [l ] in the 
one-dimensional case. This proof is applicable only to nonsingular 
varieties. The second proof (Serre [3]) uses the algebra of functors, 
goes much further, and is applicable also to normal varieties. The 
first proof was discussed in detail in the seminar and will now be 
briefly outlined. After that, we shall say a few words about the second 
proof. 

We denote by tip(D) the sheaf of germs of £-fold differentials on V 
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which are (locally) multiples of — D. This is a coherent sheaf, since 
it is locally isomorphic with the (™)-fold direct product of the sheaf 
0 . Note that Q°(P) = £(£>). We write Q* for Q*(0): this is the sheaf 
of germs of holomorphic differentials. 

First of all one proves that Hm{ V, £2W) is of dimension 1 over k. For 
m = 1 this is a consequence of the residue theorem for abelian differ­
entials on an algebraic curve V ("there exists a differential with pre-
assigned poles of order :gl and preassigned residues at these poles, 
provided the sum of residues is zero"). The general case can be re­
duced to the case m = l by the inductive procedure described in §6. 
The fundamental exact sequence (4) of §6 to be used in this case is 
the one in which J is replaced by 0m and C is replaced by Cni n large. 
A similar argument shows that Hm(V, Qm(D)) is zero for any strictly 
positive divisor D. These two assertions can be regarded as general­
izations of the "residue theorem" for abelian differentials. 

Now, if co is any element of H°(V, 0W( — D)) (i.e., co is an m-fold 
differential which is globally a multiple of D), then the multiplication 
by co of each stalk of j£(D) defines an element of Horn [«£(.D), Qm]. 
Therefore co also defines an element JD(CO) of Hom& [Hm(V, jQt(D))f 

Hm(V, Qw)],and since Hm(V, 0W)==&, JD(CO) is an element of the dual 
space of Hm( V, J£(D)). We thus have a mapping JD of H\ V, Qm( -Z>)) 
into the dual space of Hm(V, £(D)). We shall denote this dual space 
by W(—D). Since H°(V, £lm(—D)) is obviously isomorphic with 
H°(V, K — D), the duality relation (4) will follow if it is proved that 
JD is an isomorphism. 

If D is a multiple of D\ the cokernel of the inclusion map i: JÇJJD') 
—±J(^(D) is carried by a variety of dimension m — 1. Therefore i*: 
Hm(Vy j£(D'))-->Hm(V, JÇ,(D)) is an epimorphism, hence the dual of 
i* is a monomorphism as a mapping of W( — D) into W(-~Df). We can 
consider the inductive limit W oî W(—D) by these maps. I t is easy to 
introduce in W a structure of a vector space over the function-field 
K of V such that the inductive limit J of JD is a i£-linear mapping 
of the space of all global ra-forms on V into W. Here,—and this is the 
key point of the proof—if /(co) is contained in W(—D)9 then co is nec­
essarily contained in HQ(V, Qm(—£>)). The proof is indirect and is as 
follows : 

If we assume that co is not contained in H°(V> Q,m(—D)), the re­
duced expression of (co)—D is of the form Ci — Ci where & is non-
negative and C2 is strictly positive. Let 2tfi and % be cokernels of 
the inclusion maps ^ ( ( « ) - C i ) - > ^ ( Z ) ) and £((«))-*£(((*) + &), re­
spectively. Then we get the following commutative diagram of exact 
sequences: 
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i 

i 
0 

We note that ƒ<„)(«): i? m (F , «£(a>))->iIm(F, Om) is an isomorphism. 
Moreover, since J(œ) is contained in W(—£>), by definition, /(w)-ci(w), 
i.e., the product of £P»(7, £((&)-&))-*H»(V, £ ( («) ) ) and / ( - ) (« ) 
vanishes on the image of H^iV, 2tfi) in i J w (F , £ ( ( « ) - C i ) ) . How­
ever the commutativity and the exactness of the diagram show the 
opposite of this assertion, and this gives us the desired contradiction. 

As a simple consequence, we see that J is an isomorphism. On the 
other hand, W is of dimension one over K. In fact, let C be a general 
hyperplane section of V. Then, by an induction on m, we can show 
that ord (V) -nm/tnl is the dominant term of dim Hm(V, £(D-nC)) 
as a function of n, this function being equal to dim W(—D+nC). 
Since ord (V) -nm/m\ is the highest term of dim \nC\ as a polynomial 
in n for n sufficiently large, we can readily get a contradiction if W 
is not of dimension one over F(V). Since / is a monomorphism, it is 
now shown that J is an isomorphism. If we apply the key result 
which we have established earlier, we conclude that JD is an isomor­
phism. Thus (4) is proved. 

In [3] Serre proves, by using extension functors, the following 
fundamental result: 

THEOREM 7. Let J be a coherent sheaf over the projective r-space X 
and let p be an integer ^ 0 . In order that Hq(X, J(—n)) be zero for large 
n and f or 0^q<p it is necessary and sufficient that for every x G Z the 
Ox-module Jx have cohomological dimension ^r—p (i.e., that there exist 
an exact sequence 0—>Lr-p--

:>Lr-p-i-+ • • • —>L0—»3*—»0, where each Li 
is a free Ox-module; here 0X denotes the local ring of x). 

Now, suppose that J is zero outside of our m-dimensional variety 
V (i.e., that 7x = 0 for all x(£V). For x £ V let ox be the local ring of 
x on the variety V. Assume furthermore that Jx is a free module over $x. 
If F i s nonsingular then it is known that ox has cohomological dimen­
sion r — m over 0X, x £ F . If F is normal, then it can be shown that 
for all xÇzV the ©^-module o* has dimension Sr — 2 (Serre [3]). 
Hence by Theorem 7 we find that for large n 

(11) #«(F, 7 (~ w ) ) = 0 , 0 £ q ^ m - 1, if V is nonsingular. 

and 
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(12) # « ( 7 , 7 ( - n ) ) = 0 , 0 g g g l f i f 7 i s normal 

Relation (12), for 2 = 1, includes the lemma of Enriques-Severi-
Zariski as a special case. If F i s nonsingular, every sheaf JQ^D) defined 
by a divisor D is free over ox for every x in V. Hence, we have by (11) : 

(13) *«(JD - C») = 0, 0 g j g « - 1, rc—large. 

For 2 = 1 we find relation (9). Essentially the same proof which en­
abled us to derive from (9) the duality relation (4) enables one to 
derive from (13) the duality relations 

(14) A«(D) = h™-«(K -D), O^qSm. 

The following is a noteworthy application of (14). We have, by (14): 
x(V,D)=(-l)™x(V,K-D).ForD = 0,weundX(V) = (-l)mx(V,K), 
and this yields, by (2), §7: 

(2X(V) if m is odd, 

(is) XK-IO - { x y 
V 0 if m is even. 

Relation (IS) is equivalent with the equality Pa =pa (Zariski [4]), and 
thus we have a proof of Seven's conjecture Pa—pa-

In conclusion we mention the following unsolved problem: do the 
symmetry relations hp>« = hq>p hold? Here &»»« = dim HP(V, Q«). I t is 
known that these equalities hold in the complex domain, but the 
proof depends on properties of harmonic integrals and cannot be 
therefore algebraicized. 

As was pointed in §7, the symmetry relations in the classical case, 
and in particular the relations hp'0 = h0tPy yield the following expres­
sion of the arithmetic genus: pa = hm>°--hm~1>0+ • • • + ( — l)m~1A1'0, 
where hp'° is the number of linearly independent £-fold differentials 
of the first kind on V. In the case of surfaces this leads to the equality 
Pg—pa^h1'0, where pg = h2'° is the geometric genus of the surface. In 
the abstract case it is highly probable that the above expression for 
the genus may still be valid even if the symmetry relations turned 
out to be false. 
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